Name: \qquad I.D. \#: \qquad

1. Find abs.maximum and minimum values of $\quad f(x, y)=x y^{2}$

$$
\begin{equation*}
\text { on the set } \quad S=\left\{(x, y) ; 2 x^{2}+y^{2} \leq 6\right\} \tag{5}
\end{equation*}
$$

2. For $\iint_{D} \frac{y}{\sqrt{x}} d A$ where D is the region in the first quadrant between $y=\sqrt{x}$ and $x=4$
(a) sketch the region D;
(b) set up BOTH iterated integrals and evaluate one of them.

Solution

For 1)
first ,for critical points inside : solve $\nabla f=\overrightarrow{0}$
$f_{x}=y^{2}=0 \quad f_{y}=2 x y=0 \quad(x, 0)$ for any x
critical points on the boundary $\partial S=\left\{g(x, y)=2 x^{2}+y^{2}=6\right\}$.
solve $\quad \nabla f=\lambda \nabla g \quad y^{2}=\lambda 4 x \quad 2 x y=\lambda 2 y$
if $y=0$ then $x= \pm \sqrt{3}$;if $y \neq 0$ then $x=\lambda$ and $y^{2}=4 x^{2}$
back to the ellipse $6 x^{2}=6 \quad x= \pm 1, y= \pm 2$
check the values of $f: f(x, 0)=0, f(\pm \sqrt{3}, 0)=0$
$f(1, \pm 2)=4$ maxima; $f(-1, \pm 2)=-4$ minima
For 2)
$0 \leq x \leq 4 \quad 0 \leq y \leq \sqrt{x}$ or $\quad 0 \leq y \leq 2 \quad y^{2} \leq x \leq 4$
and

$$
\begin{aligned}
& \iint_{D} \frac{y}{\sqrt{x}} d A=\int_{0}^{4}\left(\frac{1}{\sqrt{x}} \int_{0}^{\sqrt{x}} y d y\right) d x=\int_{0}^{4} \frac{1}{\sqrt{x}}\left[\frac{y^{2}}{2}\right]_{y=0}^{y=\sqrt{x}} d x=\frac{1}{2} \int_{0}^{4} \sqrt{x} d x= \\
& =\left[\frac{x^{\frac{3}{2}}}{3}\right]_{0}^{2}=\frac{8}{3}
\end{aligned}
$$

$\iint_{D} \frac{y}{\sqrt{x}} d A=\int_{0}^{2}\left(y \int_{y^{2}}^{4} \frac{1}{\sqrt{x}} d x\right) d y=\int_{0}^{2} y[2 \sqrt{x}]_{x=y^{2}}^{x=4} d y=2 \int_{0}^{2} y[2-y] d y=$
$=2\left[y^{2}-\frac{y^{3}}{3}\right]_{0}^{2}=\frac{8}{3}$.

