The University of Calgary
 Department of Mathematics and Statistics
 MATH 353-01

Quiz \#3R
Winter,2006
Name: \qquad I.D. \#: \qquad

1. Set up the integral $\iint_{D} \frac{x}{\sqrt{x^{2}+y^{2}}} d x d y$ where $D=\left\{(x, y) ; x \geq 1, y \geq 0, x^{2}+y^{2} \leq 2\right\}$ as iterated integrals in both cartesian coordinates, and polar coordinates, and then evaluate (only once).
2. Evaluate the integral $\iint_{D} e^{-x^{2} y} d A$ if it is convergent, where $D=\left\{(x, y) ; 2 \leq x ; 0 \leq y \leq \frac{1}{x^{3}}\right\}$.Sketch the set.

Solution

For 1)

sketch the set,intersection of the line and circle is at $(1,1)$
so $\quad \iint_{D} \frac{x}{\sqrt{x^{2}+y^{2}}} d x d y=\int_{0}^{1}\left(\int_{1}^{\sqrt{2-y^{2}}} \frac{x}{\sqrt{x^{2}+y^{2}}} d x\right) d y=\int_{0}^{1}\left(\left[\sqrt{x^{2}+y^{2}}\right]_{x=1}^{x=\sqrt{2-y^{2}}}\right) d y=$
$=\int_{0}^{1}\left(\sqrt{2}-\sqrt{1+y^{2}}\right) d y=($ Table $)=\sqrt{2}-\left[\frac{y}{2} \sqrt{1+y^{2}}+\frac{1}{2} \ln \left(y+\sqrt{1+y^{2}}\right]_{0}^{1}=\frac{1}{2}(\sqrt{2}+\right.$ $\ln (1+\sqrt{2})$

OR
$\iint_{D} \frac{x}{\sqrt{x^{2}+y^{2}}} d x d y=\int_{1}^{\sqrt{2}} x\left(\int_{0}^{\sqrt{2-x^{2}}} \frac{d y}{\sqrt{x^{2}+y^{2}}}\right) d x=$ harder
in polar coord. $\quad \iint_{D} \frac{x}{\sqrt{x^{2}+y^{2}}} d x d y=\iint_{D^{*}} \frac{r \cos \theta}{r} r d r d \theta$
where $\quad D^{*}=\left\{0<r \leq \sqrt{2}, r \geq \frac{1}{\cos \theta}, \theta \in\left[0, \frac{\pi}{4}\right]\right\}$
$=\int_{0}^{\frac{\pi}{4}} \cos \theta\left(\int_{\frac{1}{\cos \theta}}^{\sqrt{2}} r d r\right) d \theta=\frac{1}{2} \int_{0}^{\frac{\pi}{4}} \cos \theta\left(2-\frac{1}{\cos ^{2} \theta}\right) d \theta=\int_{0}^{\frac{\pi}{4}} \cos \theta d \theta-\frac{1}{2} \int_{0}^{\frac{\pi}{4}} \sec \theta d \theta=$
$=($ Table $)[\sin \theta]_{0}^{\frac{\pi}{4}}-\left[\ln (\sec \theta+\tan \theta]_{0}^{\frac{\pi}{4}}=\frac{1}{\sqrt{2}}-\frac{1}{2} \ln (\sqrt{2}+1)\right.$.
For 2)
the function is bounded, but the set is unbdd

$$
\begin{aligned}
& \iint_{D} e^{-x^{2} y} d A=\int_{2}^{\infty}\left(\int_{0}^{\frac{1}{x^{3}}} e^{-x^{2} y} d y\right) d x=\int_{2}^{\infty} \frac{-1}{x^{2}}\left[e^{-x^{2} y}\right]_{y=0}^{y=\frac{1}{x^{3}}} d x=\int_{2}^{\infty} \frac{-1}{x^{2}}\left[e^{-\frac{1}{x}}-1\right] d x= \\
& \left.=\int_{2}^{\infty} \frac{1}{x^{2}} d x-\int_{2}^{\infty} \frac{1}{x^{2}} e^{-\frac{1}{x}} d x=\left[\frac{-1}{x}\right]_{2}^{\infty}-\int_{-\frac{1}{2}}^{0} e^{u} d u \text { (by subst. } u=\frac{-1}{x}\right)=0+\frac{1}{2}-1+e^{\frac{-1}{2}}=\frac{1}{\sqrt{e}}-\frac{1}{2} .
\end{aligned}
$$

