The University of Calgary
 Department of Mathematics and Statistics
 MATH 353

Quiz \#5R
Winter 2006
Name: \qquad I.D. \#: \qquad

1. Evaluate $\iint_{S} \frac{d S}{\sqrt{1+4 x^{2}}}$ and S is the part of the vertical surface $\quad y=1+x^{2}$ between two planes $z=0$ and $6 x-3 y-z=-3$.
2. Find $\iint_{S} \mathbf{F} \bullet d \mathbf{d}$ where $\mathbf{F}(x, y, z)=(x z, y z, z)$ and S is the part of the cone $z=\sqrt{x^{2}+y^{2}}$ below the plane $z=2$ oriented outward.

SOLUTION

For 1)
$(0 \leq z \leq 6 x-3 y+3)$
S is vertical so parametrization

$$
\begin{array}{ccc}
\mathbf{r}(u, v): x=u & y=1+u^{2} \quad z=v \\
u \in[? ?] & 0 \leq v \leq 6 u-3-3 u^{2}+3=3 u(2-u)
\end{array}
$$

so.necessary $3 u(2-u) \geq 0 \quad 0 \leq u \leq 2 \ldots . . R$
$\frac{\partial}{\partial u} \mathbf{r}(u, v)=(1,2 u, 0) \quad \frac{\partial}{\partial v} \mathbf{r}(u, v)=(0,0,1)$
$\mathbf{n}=\left(\frac{\partial}{\partial u} \mathbf{r} \times \frac{\partial}{\partial v} \mathbf{r}\right)=(2 u,-1,0) \quad\|\mathbf{n}\|=\sqrt{4 u^{2}+1}$
$\iint_{S} \frac{d S}{\sqrt{1+4 x^{2}}}=\iint_{R} \frac{1}{\sqrt{1+4 u^{2}}}\|\mathbf{n}\| d u d v=\int_{0}^{2} \frac{1}{\sqrt{4 u^{2}+1}} \sqrt{4 u^{2}+1}\left(\int_{0}^{6 u-3 u^{2}} d v\right) d u=$
$=\int_{0}^{2}\left(6 u-3 u^{2}\right) d u=\left[3 u^{2}-u^{3}\right]_{0}^{2}=4$

For 2)

S is given by $z=\sqrt{x^{2}+y^{2}}$ for $(x, y) \in D=\left\{x^{2}+y^{2} \leq 4\right\}$
$\mathbf{n}=\left(\frac{x}{\sqrt{x^{2}+y^{2}}}, \frac{y}{\sqrt{x^{2}+y^{2}}},-1\right) \ldots$..since outward means downward
\mathbf{F} on $S \quad \mathbf{F}(x, y, z)=\left(x \sqrt{x^{2}+y^{2}}, y \sqrt{x^{2}+y^{2}}, \sqrt{x^{2}+y^{2}}\right)$
and $\mathbf{F} \bullet \mathbf{n}=x^{2}+y^{2}-\sqrt{x^{2}+y^{2}}$ then

$$
\begin{aligned}
& \iint_{S} \mathbf{F} \bullet \mathbf{d} \mathbf{S}=\iint_{D} \mathbf{F} \bullet \mathbf{n} d x d y=\iint_{D}\left(x^{2}+y^{2}-\sqrt{x^{2}+y^{2}}\right) d x d y=\int_{0}^{2 \pi} \int_{0}^{2}\left(r^{3}-r^{2}\right) d r d \theta= \\
& =2 \pi\left[\frac{r^{4}}{4}-\frac{r^{3}}{3}\right]_{0}^{2}=2 \pi\left[4-\frac{8}{3}\right]=\frac{8}{3} \pi .
\end{aligned}
$$

