The University of Calgary
 Department of Mathematics and Statistics
 MATH 353
 Quiz \#5T10am

Winter 2006
Name: \qquad I.D. \#: \qquad

1. Evaluate $\iint_{S} x^{2} d S$ and S is the part of the cylinder $\quad 4=x^{2}+y^{2}$ between two planes $z=0$ and $x+y+z=3$.
2. Find $\iint_{S} \mathbf{F} \bullet \mathbf{d S}$ where $\mathbf{F}(x, y, z)=(y, x y, z)$ and S is the part of the paraboloid $z=x^{2}+y^{2}$ inside the cylinder $x^{2}+y^{2}=4$ oriented inward.

SOLUTION

For 1)
S is vertical so parametrization

$$
\begin{aligned}
& \mathbf{r}(u, v): x=2 \cos u \quad y=2 \sin u \quad z=v \\
& u \in[0,2 \pi] \quad 0 \leq v \leq 3-2 \cos u .-2 \sin u \ldots R \\
& \frac{\partial}{\partial u} \mathbf{r}(u, v)=(-2 \sin u, 2 \cos u, 0) \quad \frac{\partial}{\partial v} \mathbf{r}(u, v)=(0,0,1) \\
& \mathbf{n}=\left(\frac{\partial}{\partial u} \mathbf{r} \times \frac{\partial}{\partial v} \mathbf{r}\right)=(2 \cos u, 2 \sin u, 0) \quad\|\mathbf{n}\|=2 \\
& \iint_{S} x^{2} d S=8 \iint_{R} \cos ^{2} u d u d v=8 \int_{0}^{2 \pi} \cos ^{2} u\left(\int_{0}^{3-2 \cos u-2 \sin u} d v\right) d u= \\
& =8 \int_{0}^{2 \pi} \cos ^{2} u(3-2 \cos u-2 \sin u) d u=8 \int_{0}^{2 \pi} 3 \cos ^{2} u-2 \cos ^{3} u-2 \cos ^{2} u \sin u d u= \\
& =12 \int_{0}^{2 \pi}(1+\cos 2 \theta) d \theta-0=24 \pi
\end{aligned}
$$

For 2)

S is given by $z=x^{2}+y^{2}$ for $(x, y) \in D=\left\{x^{2}+y^{2} \leq 4\right\}$
$\mathbf{n}=(-2 x,-2 y, 1) \ldots$ since inward means upward
\mathbf{F} on $S \quad \mathbf{F}(x, y, z)=\left(y, x y, x^{2}+y^{2}\right)$
and $\mathbf{F} \bullet \mathbf{n}=-2 x y-2 x y^{2}+x^{2}+y^{2}$ then
$\iint_{S} \mathbf{F} \bullet \mathbf{d} \mathbf{S}=\iint_{D} \mathbf{F} \bullet \mathbf{n} d x d y=\iint_{D}\left(-2 x y-2 x y^{2}+x^{2}+y^{2}\right) d x d y=0+\int_{0}^{2 \pi} \int_{0}^{2}\left(r^{3}\right) d r d \theta=$
since 2 x is odd and the set is symetrical $\operatorname{in} \pm x$
$=2 \pi\left[\frac{r^{4}}{4}\right]_{0}^{2}=8 \pi$.

