The University of Calgary Department of Mathematics and Statistics MATH 353 Quiz #5T10am

	Winter 2006
Name:I.D.#:	
1. Evaluate $\iint_{S} x^2 dS$ and S is the part of the cylinder $4 = x^2 + y^2$	
between two planes $z = 0$ and $x + y + z = 3$.	[5]
2. Find $\iint_{S} \mathbf{F} \bullet \mathbf{dS}$ where $\mathbf{F}(x, y, z) = (y, xy, z)$ and S is the part of	
the paraboloid $z = x^2 + y^2$ inside the cylinder $x^2 + y^2 = 4$ oriented inwa	ard. [5]
SOLUTION	
For 1)	
S is vertical so parametrization	
$\mathbf{r}(u,v): x = 2\cos u$ $y = 2\sin u$ $z = v$	
$u \in [0, 2\pi]$ $0 \le v \le 3 - 2\cos u - 2\sin u \dots R$	
$\frac{\partial}{\partial u}\mathbf{r}(u,v) = (-2\sin u, 2\cos u, 0)$ $\frac{\partial}{\partial v}\mathbf{r}(u,v) = (0,0,1)$	
$\mathbf{n} = \left(\frac{\partial}{\partial u}\mathbf{r} \times \frac{\partial}{\partial v}\mathbf{r}\right) = (2\cos u, 2\sin u, 0) \qquad \ \mathbf{n}\ = 2$	
$\iint_{S} x^2 \ dS = 8 \iint_{R} \cos^2 u \ du dv = 8 \int_{0}^{2\pi} \cos^2 u \left(\int_{0}^{3-2\cos u - 2\sin u} dv \right) du =$	
$=8\int_{0}^{2\pi}\cos^{2}u\left(3-2\cos u-2\sin u\right)du=8\int_{0}^{2\pi}3\cos^{2}u-2\cos^{3}u-2\cos^{2}u\sin u$	udu =
$= 12 \int_{0}^{2\pi} (1 + \cos 2\theta) d\theta - 0 = 24\pi \qquad \text{since } 2\pi - \text{periodicity.}$	
For 2)	
S is given by $z = x^2 + y^2$ for $(x, y) \in D = \{x^2 + y^2 \le 4\}$	
$\mathbf{n} = (-2x, -2y, 1)$ since inward means upward	
F on <i>S</i> F (<i>x</i> , <i>y</i> , <i>z</i>) = (<i>y</i> , <i>xy</i> , <i>x</i> ² + <i>y</i> ²)	
and $\mathbf{F} \bullet \mathbf{n} = -2xy - 2xy^2 + x^2 + y^2$ then	

 $\iint_{S} \mathbf{F} \bullet \mathbf{dS} = \iint_{D} \mathbf{F} \bullet \mathbf{n} \ dxdy = \iint_{D} (-2xy - 2xy^{2} + x^{2} + y^{2})dxdy = 0 + \int_{0}^{2\pi} \int_{0}^{2} (r^{3})drd\theta = 0$

since 2x is odd and the set is symetrical in $\pm x$

$$=2\pi\left[\frac{r^4}{4}\right]_0^2=8\pi.$$