The University of Calgary
Department of Mathematics and Statistics
MATH 353
Quiz \#5T 2pm
Winter 2006
Name: \qquad I.D. \#: \qquad

1. Evaluate $\iint_{S} z y^{2} d S$ and S is the part of the sphere $x^{2}+y^{2}+z^{2}=2$, above the xy-plane, and outside the cylinder $x^{2}+y^{2}=1$.
2. Find $\iint_{S} \mathbf{F} \bullet \mathbf{d} \mathbf{S}$ where $\mathbf{F}(x, y, z)=(y, x z, x y z)$ and S is the part of the plane $x+y=2$ in the first octant below the plane $x+y+z=5$ oriented in the direction of positive x..

SOLUTION

For 1)

S is given by $z=\sqrt{2-x^{2}-y^{2}}$ for $(x, y) \in D=\left\{1 \leq x^{2}+y^{2} \leq \sqrt{2}\right\}$

$$
\begin{aligned}
& \mathbf{n}=\left(\frac{x}{\sqrt{2-x^{2}-y^{2}}}, \frac{y}{\sqrt{2-x^{2}-y^{2}}}, 1\right) \quad\|\mathbf{n}\|=\sqrt{\frac{x^{2}+y^{2}}{2-x^{2}-y^{2}}+1}=\frac{\sqrt{2}}{\sqrt{2-x^{2}-y^{2}}} \\
& \iint_{S} z y^{2} d S=\iint_{D} y^{2} \sqrt{2-x^{2}-y^{2}} \frac{\sqrt{2}}{\sqrt{2-x^{2}-y^{2}}} d x d y(\text { polar })=\sqrt{2} \int_{0}^{2 \pi \sqrt{2}} \int_{1}^{2} r^{3} \sin ^{2} \theta d r d \theta= \\
& =\sqrt{2} \int_{1}^{\sqrt{2}} r^{3} d r \int_{0}^{2 \pi} \frac{1-\cos 2 \theta}{2} d \theta=\sqrt{2}\left[\frac{r^{4}}{4}\right]_{1}^{\sqrt{2}} \pi=\frac{3 \sqrt{2}}{4} \pi .
\end{aligned}
$$

For 2)

S is vertical so parametrization $\quad \mathbf{r}(u, v)$:
$x=u \quad y=2-u \quad z=v$
$x \geq 0, y \geq 0 \quad u \in[0,2] \quad 0 \leq v \leq 5-2=3 \ldots . R$
$\frac{\partial}{\partial u} \mathbf{r}(u, v)=(1,-1,0) \quad \frac{\partial}{\partial v} \mathbf{r}(u, v)=(0,0,1)$
$\mathbf{n}= \pm\left(\frac{\partial}{\partial u} \mathbf{r} \times \frac{\partial}{\partial v} \mathbf{r}\right)=(-1,-1,0)$ or $(1,1,0) \ldots \mathrm{x}$ pos
\mathbf{F} on $S \quad \mathbf{F}=(2-u, u v, \ldots$.$) and \mathbf{F} \bullet \mathbf{n}=2-u+u v$ then
$\iint_{S} \mathbf{F} \bullet \mathbf{d} \mathbf{S}=\iint_{R} \mathbf{F} \bullet \mathbf{n} d u d v=$
$=\int_{0}^{2}\left(\int_{0}^{3}(2-u+u v) d v\right) d u=12-3 \int_{0}^{2} u d u+\int_{0}^{2} u d u\left[\frac{v^{2}}{2}\right]_{0}^{3}=6+2 \cdot \frac{9}{2}=15$.

