MATH 353 Handout #0: Review

 \mathbf{A}

1. Sketch some level curves of the function $f(x,y) = x^3 - 3xy^2$. Try to sketch the graph of this function. Why do you think this function is called a monkey saddle?

 \mathbf{B}

- 2. Find the gradient: $T(x, y, z) = x^3y + y^3z + z^3x$.
- 3. Let $f(x,y) = x^3/(x^2 + y^2)$ when $(x,y) \neq (0,0)$ and f(x,y) = 0 otherwise. Calculate the partial derivatives $f_x(0,0)$, $f_y(0,0)$, $f_{xy}(0,0)$ and $f_{yx}(0,0)$ or explain why they do not exist.
- 4. Find the gradient and second-order partial derivatives of $u(x,y) = k(\ln(\cos(x/k)) \ln(\cos(y/k))$ where k is any non-zero constant.
- 5. Find the gradient and second-order partial derivatives of $f(x,y) = 2xy^2 x^2y + 4xy$.

 \mathbf{C}

6. Determine whether or not the sequence converges. If it does, find the limit.

(a)
$$a_n = \frac{(-1)^n e^n}{n!}$$

(b)
$$a_n = \frac{\ln(n)}{arctann}$$

(c)
$$a_n = \frac{n^{100} + 2^n \pi}{2^n}$$