MATH 353 Handout #5

- 1. Find the surface area of the part of the sphere $x^2 + y^2 + z^2 = 2$ that lies inside the paraboloid $z = x^2 + y^2$.
- 2. Find the flux of $\mathbf{F} = \mathbf{i} + \mathbf{j} + z(x^2 + y^2)^2 \mathbf{k}$ out of the surface (including top and bottom)

$$S = \{(x,y,z)\,; x^2+y^2=4, 0 \le z \le 3\}\,.$$

- 3. Find the surface area of S
 - (a) which is the part of the cylinder $x^2 + y^2 = 4$ in the first octant below the plane 2x + y + z = 5;
 - (b) which is the part of the plane 2x + y + z = 5 inside the cylinder $x^2 + y^2 = 4$.
- 4. Find the flux $\int \int_S \mathbf{F} \cdot d\mathbf{S}$ where S is the part of the cylinder $y^2 + z^2 = 4$ which lies inside the cylinder $x^2 + y^2 = 4$, above the xy-plane, oriented upward,

and the field is
$$\mathbf{F}(x, y, z) = (x^2yz, y, xz)$$
.

- 5. Evaluate $\int \int_S zx \ dS$ where S is the part of $z = \frac{x^2}{2}$ which lies inside $x^2 + y^2 = 1, x > 0, y < 0$.
- 6. Evaluate $\int \int_S x^2 dS$ where S is the part of the plane x+y+z=2 inside the cyllinder $x^2+2y^2=1$.