MATH 353 Handout #1 - Winter 2010

- 1. For each $S \subset \mathbb{R}^2$, find ∂S . Is S open, closed, bounded? Sketch S as well.
 - (a) $S = \{(x, y) : \frac{|x|}{|y|} \le 1\},$
 - (b) $S = \{(x, y) : y 2x = 1, 1 \le y \le 3\},\$
 - (c) $S = \{(x, y) : y 2x \le 1, 1 \le y \le 3\},\$
 - (d) $S = \{(x, y) : \ln(xy) \le 0\},\$
 - (e) $S = \{(x, y) : 0 < x^2 + y^2 < 4\},\$
 - (f) $S = \{(x, y) : 0 < x^2 + y^2 \le 4\}.$
- 2. Classify all critical points of $f(x,y) = 2xy^2 x^2y + 4xy$. Find the absolute maximum, absolute minimum if it exists. Also, find the absolute maximum and absolute minimum of f on the three edges of the triangle with vertices A = (0,0), B = (1,0), C = (0,1).
- 3. Classify all critical points of $f(x,y) = 3y^3 x^2y + x^2$.
- 4. (Problem # 3 of ch 13.1 in the textbook). Find and classify all critical points of $f(x,y) = x^3 + y^3 3xy$.
- 5. (Problem # 15 of ch 13.1 in the textbook). Find and classify all critical points of $f(x,y) = \left(1 + \frac{1}{x}\right) \left(1 + \frac{1}{y}\right) \left(\frac{1}{x} + \frac{1}{y}\right)$.
- 6. (Problem # 17 of ch 13.1 in the textbook). Find and classify all critical points of $f(x, y, z) = xy + x^2z x^2 y z^2$.
- 7. (Problem # 23 of ch 13.1 in the textbook). Postal regulations require that the sum of the height and girth(horizontal perimeter) of a package should not exceed L units. Find the largest volume of a rectangular box that can satisfy this requirement.