The University of Calgary
Department of Mathematics and Statistics
MATH 353 Handout #3 Solutions

1. The intersection of the two surfaces happens when z = cos \/z2 + y2 = 0, and this is exactly
when /22 +y? = 7/2, i.e. 2? +y? = (7/2)%. So D = {(z,y)[z* + y* < (5 ) } and
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(polar coord.) where in polar coordinates D = {(r,0)[0 < r < 7;0 < 6 < 27}. Using

integration by parts V = 27 [ rcosr dr = 2 [rsinr — [[sinr ale]og = 12 4 27 [cos7]¢ =
2
w4 — 2.

2. Using polar coord.
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where D ={0<60<m,1<r<2}

3. The triangle is T'= {0 < 2 < 2,2z <y < 4} so

y—2x
for k # 1.
Then limy .2, (y — 2¢)™% = 0 for 1 — k > 0 and diverges for 1 — k < 0.

For k = 1, the anti-derivative is a logarithm and [In(y — 2z)]Y_,. = +oco. So the integral is

convergent for only £ < 1 and
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since 2 — k > 0.
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4. Use polar coordinates, let x = rcosf, y = rsinf then I = ffD ﬁdmdy = ffD drdf. The
z2+y

boundary of D in polars can be obtained by replacing = by r cosf and y by 7 sin 6:
x+y2<2:>r2<2:>r<f :E>1:>rcost9>1:>r> y>0:>Sin0>

Cos@’

0 => 0 € [0, 7], on the other side, 1> <r <2 = 1> <2 = cosf > f = 60 € [0,7],
Then
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= % — (In|sect + tanb|); = % —In(v2 +1).



5. D ={z € (1,+00),0 <y < %} is unbounded so
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6. The function is unbounded
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9. There are five other possible orders of integration, so how to judge which of these five to use?
Because integrating e with respect to x is impossible as it stands, that suggests leaving the
dx integral for last, integrating first with respect to y and then z, or vice versa. So let’s try the
following order: first dy, then dz then dz. From the original iterated integral, the inequalities
satisfied by the three variables are given as



(a): 0<2<1,(b): z<z<land(c): 0<y<uz.

Since z is the last variable to be integrated, we need to find the constant upper and lower limits
for it. From (b), we have = < 1, also from (b), we have x > z, but z is not a constant, so we
combine (a) and (b) and obtain 0 < z < x s0 0 <z, thus 0 <z < 1.

We then determine the upper and lower limits for z, obviously the upper and lower limits for
z can be functions of z but can not contain y. From (b), we have z < z so the upper limit for
z is z, from (a), we have 0 < z so the lower limit for z is 0, thus 0 < z < z.

We finally determine the upper and lower limits for y, and they can be functions of both z and
z. From (c), we have 0 < y < x. So we obtain the following iterated integral:
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Remark : The order of integration first dz, then dy, last dx works about as easily as the order
used above.




