The University of Calgary Department of Mathematics and Statistics MATH 353 Handout #4

- 1. Given $\mathbf{F}(x, y, z) = \langle 3x^2yz, \beta yz + x^3z, x^3y + 1 + y^2 \rangle$.
 - (a) Find the value of β so that the field **F** is conservative.
 - (b) Then, find a scalar potential of \mathbf{F} .
- 2. For $\mathbf{F}(x,y) = \langle \beta y^2 + x, xy \frac{1}{\sqrt{y}} \rangle$, find the value for β so that the field is conservative, then find a potential.
- 3. Calculate **div F** and **curl F** for the following vector fields:

(a)
$$\mathbf{F} = y \mathbf{i} + x \mathbf{j}$$
, (b) $\mathbf{F} = xy^2 \mathbf{i} - yz^2 \mathbf{j} + zx^2 \mathbf{k}$

4. Calculate **div F** and **curl F** for the following vector fields in polar coordinates:

$$\mathbf{F} = \hat{\mathbf{r}} = \cos\theta \mathbf{i} + \sin\theta \mathbf{j}$$

5. Let ϕ and ψ be scalar fields and \mathbf{F} and \mathbf{G} be vector fields. Assume all are sufficiently smooth, prove the following identities:

(a)
$$\nabla \bullet (\mathbf{F} \times \mathbf{G}) = (\nabla \times \mathbf{F}) \bullet \mathbf{G} - \mathbf{F} \bullet (\nabla \times \mathbf{G})$$

(b)
$$\nabla \times (\nabla \times \mathbf{F}) = \nabla(\nabla \cdot \mathbf{F}) - \nabla^2 \mathbf{F}$$

6. If ϕ and ψ are smooth scalar fields, show that

$$\nabla \times (\phi \nabla \psi) = -\nabla \times (\psi \nabla \phi) = \nabla \phi \times \nabla \psi.$$

- 7. Evaluate $\int_c f \, ds$ where $f(x,y,z)=z^2$ and c is the part of the line of intersection of two planes x+y-z=1 and 2x+y-3z=0 between the xy-plane and the point D=(3,0,2).
- 8. Evaluate $\int_c z \, ds$ where c is the intersection of the plane z y = 1 and the cylindrical surface $0 = x y^2$ between A = (1, -1, 0) and B = (0, 0, 1).