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1. It’s easy to check, following the hint, that F is conservative. Also the curve C, being the
intersection of a paraboloid with an oblique plane, is a closed curve. That’s all one needs, the

line integral

∫

C
F • dr = 0 for any conservative vector field around any closed curve.

2. This question is routine since the curve C is already parametrized. You should find that the

integral reduces to

∫

1

0

(et + 2tet + 2tet)dt, and the answer is e + 3.

3. Following the hint, notice that the portion 〈yexy, xexy〉 of the given vector field is conservative
(a potential function for this would be φ = exy), so this part integrates to 0 around the closed
curve C. Therefore just use the remaining part of the vector field 〈0, x〉. As usual parametrize
the curve, which is the unit circle, by r = 〈cos t, sin t〉, 0 ≤ t ≤ 2π. It is now routine to find

that the integral reduces to

∫

2π

0

(cos(t))2 = π, where the last integral is worked out using the

double angle formula for (cos t)2.

4. (a) Use r = 〈2 cos u, 2 sin u, v〉. One finds ‖ru × rv‖ = 2, so dS = 2dudv. The surface area
is then given by

∫ π/2

0

∫

5−4 cos u−2 sin u

0

2 dv du = 5π − 12.

(b) Use r = 〈v cos u, v sin u, 5 − 2v cos u − v sinu〉. One finds dS =
√

6v, and finally gets
∫

2π

0

∫

2

0

√
6 v dv du = 4

√
6 π.

5. Here the simple parametrization r = 〈x, y, x2/2〉 works well. One then finds dS =
√

x2 + 1dydx.
This gives a pretty tough looking integral but fortunately it works out easily with the substi-
tution u = 1 − x4, we don’t show all details (the region is the quarter of the unit disk in the
4’th quadrant) :

∫

1

0

∫

0

−
√

1−x2

1

2
x3

√

1 + x2 dy dx =

∫

1

0

x3
√

1 − x4 dx =
1

12
.

6. Parametrize with r = 〈x, y, 2 − x − y〉. Then dS =
√

3 dv du. Integrating over the elliptical
disk x2 + 2y2 ≤ 1 gives

∫

1

−1

∫

√

2

2

√
1−x2

−
√

2

2

√
1−x2

x2
√

3 dy dx.

Now the substitution x = r cos θ, y = 1√
2

sin θ will simplify things. By taking the Jacobian

determinant we find dy dx = r√
2
dr dθ, and finally get

√
3√
2

∫

2π

0

∫

1

0

r2 (cos θ)2 · r dr dθ =

√
6

8
π.
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7. There are three regions (surfaces) and one has to add the flux over each one. The bottom region
is the disk z = 0, x2 + y2 ≤ 4, with outward unit normal N = 〈0, 0,−1〉. Here F = 〈1, 1, 0〉
(since z = 0), so F • N = 0 and the flux for this part is 0. The top region is similar, with
N = 〈0, 0, 1〉 and also z = 3. One then gets for this region

∫

2

−2

∫

√
4−x2

−
√

4−x2

3(x2 + y2)2 dy dx,

and this is easily done by converting to polar coordinates

3

∫

2π

0

∫

2

0

r4 · r dr dθ = 64π.

For the cylindrical part, it is the same cylinder as in 4(a) so use the same parametrization. It
gives ru × rv = 〈2 cos u, 2 sin u, 0〉, so NdS = 〈2 cos u, 2 sin u, 0〉du dv, giving for the flux on
this part

∫ ∫

F • NdS = 2

∫

2π

0

∫

3

0

(cos u + sinu)dv du = 2 · 3 ·
∫

2π

0

(cos u + sin u) du = 0.

Adding the three contributions gives 64π.

Remark : This problem can be done a second way, using the divergence theorem, and it is
much easier this way. It will be on Handout 6.

8. Use r = 〈x, y,
√

4 − y2〉. One finds

rx × ry = 〈0, y
√

4 − y2
, 1〉,

∫ ∫

F •N dS =

∫

2

0

∫

√
4−y2

−
√

4−y2

(
y2

√

4 − y2
+ x

√

4 − y2) dx dy.

This hard looking integral actually simplifies lots when done, giving 16/3.

Remark : A good sketch of the surface is helpful to see what the region of integration in the
xy-plane should be. It is the semidisk 0 ≤ y ≤

√
4 − x2, which should explain where the limits

of integration on the double integral come from.
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