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. It’s easy to check, following the hint, that F is conservative. Also the curve C, being the
intersection of a paraboloid with an oblique plane, is a closed curve. That’s all one needs, the

line integral / F e dr = 0 for any conservative vector field around any closed curve.
C

. This question is routine since the curve C is already parametrized. You should find that the
1
integral reduces to / (€' 4 2te’ 4 2te')dt, and the answer is e + 3.
0
. Following the hint, notice that the portion (ye™¥, xe™) of the given vector field is conservative
(a potential function for this would be ¢ = €™¥), so this part integrates to 0 around the closed

curve C. Therefore just use the remaining part of the vector field (0, x). As usual parametrize
the curve, which is the unit circle, by r = (cost,sint), 0 <t < 2x. It is now routine to find

2T
that the integral reduces to / (cos(t))? = m, where the last integral is worked out using the
0
double angle formula for (cost)?.

. (a) Use r = (2cosu,2sinu,v). One finds |r, X r,|| =2, so dS = 2dudv. The surface area

is then given by
w/2 prb—4cosu—2sinu
/ / 2dvdu = dm — 12.
0 0

(b) Use r = (vcosu,vsinu,5 — 2vcosu — vsinu). One finds dS = /6v, and finally gets

27 2
/ / Vévdvdu =46 .
0 0

. Here the simple parametrization r = (z,y, 22/2) works well. One then finds dS = v/22 + 1dydz.
This gives a pretty tough looking integral but fortunately it works out easily with the substi-
tution u =1 — 2%, we don’t show all details (the region is the quarter of the unit disk in the
4’th quadrant) :

1 70 1
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/ / —x?’\/l—i-w?dydw:/ 31 — 2t de = —.
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. Parametrize with r = (z,y,2 — 2 —y). Then dS = v/3dvdu. Integrating over the elliptical

disk 22 + 2y? < 1 gives
1 217
/ / 2% V3 dy dz.
12122
Now the substitution = = rcosf, y = % sin @ will simplify things. By taking the Jacobian

determinant we find dydz = % dr df, and finally get

\/g 2 pl 5 ) \/6
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7. There are three regions (surfaces) and one has to add the flux over each one. The bottom region
is the disk z = 0, 2% + y? < 4, with outward unit normal N = (0,0, —1). Here F = (1,1,0)
(since z = 0), so F e N = 0 and the flux for this part is 0. The top region is similar, with
N = (0,0, 1) and also z = 3. One then gets for this region

2 Vi—zx2
/ / 3(z? + y*)% dy du,
—2J—V4—22

and this is easily done by converting to polar coordinates

27 2
3/ / r* . rdrdf = 64r.
0 0

For the cylindrical part, it is the same cylinder as in 4(a) so use the same parametrization. It
gives r, X r, = (2cosu,2sinu,0), so NdS = (2cosu,2sinu,0)dudv, giving for the flux on
this part

2 3 2T
//FoNdS:2/ / (cosu+sinu)dvdu:2-3'/ (cosu+sinu) du = 0.
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Adding the three contributions gives 64r.

Remark : This problem can be done a second way, using the divergence theorem, and it is
much easier this way. It will be on Handout 6.

8. Use r = (z,y,/4 —y?). One finds

ry X ry = (0,

//FoNdS //MM—FJCM)dxdy.

This hard looking integral actually simplifies lots when done, giving 16/3.

Remark : A good sketch of the surface is helpful to see what the region of integration in the
zy-plane should be. It is the semidisk 0 < y < v/4 — 22, which should explain where the limits
of integration on the double integral come from.



