MATH 353 - Winter 2010 Handout #5

- 1. Find $\int_{\mathcal{C}} \mathbf{F} \bullet d\mathbf{r}$ where $\mathbf{F}(x, y, z) = \langle y, x + z, y 2z \rangle$ and \mathcal{C} is the intersection of the plane z = 2x and the paraboloid $z = x^2 + y^2$. [Hint: test the vector field \mathbf{F} to see if it is conservative.]
- 2. Find $\int_{\mathcal{C}} \mathbf{F} \bullet d\mathbf{r}$ where $\mathbf{F}(x, y, z) = \langle z, e^{(y/x)}, 2x \rangle$ and \mathcal{C} is given by $\mathbf{r}(t) = \langle t, t^2, e^t \rangle$, $0 \le t \le 1$.
- 3. Find $\int_{\mathcal{C}} \mathbf{F} \bullet d\mathbf{r}$ where $\mathbf{F}(x,y) = \langle ye^{xy}, xe^{xy} + x \rangle$ and \mathcal{C} is the circle $x^2 + y^2 = 1$, oriented counterclockwise. [Hint: you can save a lot of work by noticing that part of the vector field \mathbf{F} is conservative.]
- 4. Find the surface area of S
 - (a) which is the part of the cylinder $x^2 + y^2 = 4$ in the first octant below the plane 2x + y + z = 5;
 - (b) which is the part of the plane 2x + y + z = 5 inside the cylinder $x^2 + y^2 = 4$.
- 5. Evaluate $\int \int_{\mathcal{S}} zx \, dS$ where \mathcal{S} is the part of $z = \frac{x^2}{2}$ which lies inside $x^2 + y^2 = 1, \ x > 0, \ y < 0.$
- 6. Evaluate $\int \int_{\mathcal{S}} x^2 dS$ where \mathcal{S} is the part of the plane x+y+z=2 inside the cylinder $x^2+2y^2=1$.
- 7. Find the flux of $\mathbf{F} = \mathbf{i} + \mathbf{j} + z(x^2 + y^2)^2\mathbf{k}$ out of the closed surface (including the top and bottom of the cylinder) $\mathcal{S} = \{(x, y, z) : x^2 + y^2 = 4, 0 \le z \le 3\}$.
- 8. Find the flux $\iint_{\mathcal{S}} \mathbf{F} \cdot d\mathbf{S}$ where \mathcal{S} is the part of the cylinder $y^2 + z^2 = 4$ which lies inside the cylinder $x^2 + y^2 = 4$, $y, z \ge 0$, oriented upward, and the field is $\mathbf{F}(x, y, z) = \langle x^2yz, y, xz \rangle$.