The University of Calgary Department of Mathematics and Statistics MATH 353 Handout #6 Answers

1. This is a straightforward application of Green's theorem. Applying it gives

$$\int_{0}^{1} \int_{3x}^{3} (4y^3 - 2x^2y^2) dy dx,$$

and there is no problem integrating this to obtain 318/5.

2. This is not a closed curve, and a direct attempt at the line integral will lead to very difficult (impossible) integration. To apply Green's theorem, let's complete the given curve, which we will call C_1 , to a simple closed curve by adding the line segment C_2 from (0,0) to $(\pi,0)$. We then get a simple closed curve $C = C_1 \cup (-C_2)$. Then

$$\int_{\mathcal{C}} = \int_{\mathcal{C}_1} - \int_{\mathcal{C}_2}.$$

Using Green's theorem (noting C has clockwise orientation),

$$\int_{\mathcal{C}} = -\int_{0}^{\pi} \int_{0}^{\sin x} (2x - 3y^{2}) dy dx = \int_{0}^{\pi} ((\sin x)^{3} - 2x \sin x) dx,$$

which gives $4/3 - 2\pi$ after a bit of work.

For C_2 use the parametrization $\mathbf{r} = \langle t, 0 \rangle$ and one gets

$$\int_0^{\pi} \sqrt{t} \ dt = (2/3)(\pi)^{3/2}.$$

The final answer is then $4/3 - 2\pi + (2/3)(\pi)^{3/2}$.

3. Directly using the divergence theorem gives

$$\int \int \int_{\mathcal{R}} (12x^2z + 12y^2z + 12z^3)dV,$$

and changing to spherical coordinates gives

$$12 \int_0^{2\pi} \int_0^{\pi} \int_0^R (\rho^2 z) \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta = 0.$$

4. $\nabla \bullet \mathbf{F} = 0 + 0 = 0$, so the answer is 0.

5. In this case Stokes's theorem is used in "reverse." In this case our surface S is the paraboloid and its boundary $C = \partial S$ is the circle of radius 2 in the plane z = 5, centred at the origin. Parametrize C by $\mathbf{r} = \langle 2\cos t, 2\sin t, 5 \rangle$. One finds

$$\int_{\mathcal{C}} \mathbf{F} \bullet d\mathbf{r} = \int_{0}^{2\pi} 20(-\sin^{2}t + \cos^{2}t)dt = 20 \int_{0}^{2\pi} \cos(2t)dt = 0.$$

6. Parametrize by $\mathbf{r}(x,y) = \langle x,y,1-x-y/2 \rangle$. Applying Stokes's theorem then leads fairly directly to

$$\int_0^1 \int_0^{2x-2} e^x dy dx = 2e - 4.$$

1