MATH 353 L01, L02 W 2010

HANDOUT 2

- 1. Find the absolute extrema of $f(x,y) = (1/8)x^3 + y^3$ on the disk $x^2 + y^2 \le 65$.
- 2. Which of the following domains in \mathbb{R}^3 is compact?
 - (a) $D_a = \{(x, y, z) : x^2 + 4y^2 + 9z^2 \le 36\}.$
 - (b) $D_b = \{(x, y, z) : x^2 + 4y^2 + 9z^2 = 36\}.$
 - (c) $D_c = \{(x, y, z) : x^2 4y^2 + 9z^2 = 36\}.$
 - (d) $D_d = \{(x, y, z) : x^2 4y^2 9z^2 = 36\}.$
 - (e) $D_e = \{(x, y, z) : 1 \le x, y, z^3 \le 8\}.$
- 3. Find the point on the plane x 2y z = 3 closest to the point P = (1, -1, 2). Justify your answer.
- 4. Section 13.3-20. A box has one vertex at the origin, the diagonally opposite vertex on the surface xy + 2yz + 3xz = 18, $x, y, z \ge 0$, and all its edges parallel to the coordinate axes. Find the largest possible volume for the box.
- 5. Section 13.3-14. Find the maximum and minimum values of $f(x, y, z) = x + y^2 z$ subject to the constraints $y^2 + z^2 = 2$ and z = x.
- 6. Section 13.3-22. Find the absolute maximum and absolute minimum of $f(x, y, z) = xy + z^2$ on the unit ball $x^2 + y^2 + z^2 \le 1$.
- 7. (a) Evaluate $\int_{1}^{3} \int_{-x}^{x^{2}} xe^{2y} dy dx$.
 - (b) Write (a) as an iterated integral in the order dxdy.
- 8. Evaluate $\int \int_D \sqrt{2-x^2} dA$, where D is the smaller region between $y=x^2$ and $x^2+y^2=2$.
- 9. Section 14.2-16. Evaluate $\int_0^{\pi/2} \int_y^{\pi/2} \frac{\sin x}{x} dx dy.$
- 10. Calculate the volume of the solid D below the surface $z = e^{(y-1)^2}$ and above the triangle T with vertices A = (-1,0,0), B = (0,1,0), C = (2,0,0), the faces of D being vertical.

1