MATHEMATICS 353

Winter 2010 REVIEW FOR FINAL EXAM

- 1. A few Basics to be done at the review session only.
- 2. Max and min for $f(x,y) = 2x^2 3y^2 2x$ on the closed unit disc \mathcal{D} .
- 3. Let \mathcal{D} be the entire second quadrant. Determine

$$\int \int_{\mathcal{D}} x e^{x-y} \ dA.$$

4. Evaluate the integral

$$\int \int_{\mathcal{D}} e^{3(x^2+y^2)} dx dy, \text{ where } \mathcal{D} = \{(x,y) : 0 \le y, 1 \le x^2 + y^2 \le 4\}.$$

5. Express the following iterated integral in the order dxdzdy:

$$\int_0^1 dx \int_0^{1-x} dy \int_u^1 f(x, y, z) \ dz.$$

6. If ϕ is a scalar field and **F** is a vector field, prove that

$$\nabla \times (\phi \mathbf{F}) = (\nabla \phi) \times \mathbf{F} + \phi(\nabla \times \mathbf{F}).$$

- 7. Evaluate $\int_{\mathcal{C}} f \, ds$, where $f(x,y,z) = y + z^2 1$ and \mathcal{C} is the portion of the curve $\mathbf{r}(t) = \langle (4/3)t^{3/2}, t^2 + 1, t \rangle$ from A = (0,1,0) to B = (4/3,2,1).
- 8. Given $\mathbf{F}(x, y, z) = \langle \alpha x + yz, xz, xy \rangle$, find α so that \mathbf{F} is conservative, and then find a potential function ϕ .
- 9. Find the surface area of S, the part of the cylinder $x^2 + y^2 = 4$ that is in the first octant and below the plane x + y + 2z = 6.
- 10. Evaluate $\int_{\mathcal{C}} 3x^2y^2 dx + 4x^3y dy$, where \mathcal{C} is the boundary of the square with vertices (0,0), (1,0), (1,1), (0,1), oriented positively.
- 11. Find the flux of the vector field $\mathbf{F}(x, y, z) = y\mathbf{i} x\mathbf{j} + 4\mathbf{k}$ upward through the surface \mathcal{S} , where \mathcal{S} is the part of the surface $z = 1 x^2 y^2$ that lies inside the cylinder $x^2 + y^2 = 1$.
- 12. Evaluate $\int_{\mathcal{C}} \mathbf{F} \bullet d\mathbf{r}$, where $\mathbf{F} = \langle ye^x, x^2 + e^x, z^2e^z \rangle$ and \mathcal{C} is the curve $\mathbf{r}(t) = \langle 1 + \cos t, 1 + \sin t, 1 \cos t \sin t \rangle$, $0 \le t \le 2\pi$. [Hint: Use Stokes's theorem.]