- 1. In the following questions ϕ, ψ are scalar fields and \mathbf{F}, \mathbf{G} are vector fields in \mathbb{R}^3 . All functions are assumed to be smooth. For each question, write either "vector field," "scalar field," or "meaningless" in the space provided.
 - (a) $\nabla \bullet (\nabla \phi)$
 - (b) $(\nabla \bullet \mathbf{F}) \times (\nabla \bullet \mathbf{G})$
 - (c) $(\nabla \times \mathbf{F}) \times \mathbf{G}$
 - (d) $\nabla \bullet (\nabla \times \phi)$
 - (e) $(\nabla \bullet \mathbf{F}) \mathbf{G}$
- 2. For each of the following answer "True" or "False". Do not write "T" or "F".
 - (a) $\{(x, y, z) : x + y + z < 10 \text{ and } x^2 + y^2 + z^2 \le 3\}$ is closed.
 - (b) The matrix

$$\begin{bmatrix} 1 & 2 & 0 \\ 2 & 5 & \sqrt{2} \\ 0 & \sqrt{2} & 6 \end{bmatrix}$$

is positive definite.

- (c) At any point of a smooth surface S in \mathbb{R}^3 there is a unique unit normal vector N.
- (d) If **F** is a conservative vector field, defined over a simply connected domain \mathcal{D} , then $\int_{\mathcal{C}} \mathbf{F} \bullet d\mathbf{r} = 0$ for any oriented path \mathcal{C} in the domain \mathcal{D} .
- (e) The following equality is correct.

$$\int_0^{\pi} \int_0^{\pi/4} \int_2^3 e^{\theta + \phi} \ln(\rho) \cdot \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta$$
$$= \left(\int_0^{\pi} e^{\theta} \, d\theta \right) \cdot \left(\int_0^{\pi/4} e^{\phi} \sin \phi \, d\phi \right) \cdot \left(\int_2^3 \ln(\rho) \cdot \rho^2 \, d\rho \right)$$

For Questions 3-10 circle the correct answer. Your must show your work.

3. The set of values for c such that the matrix

$$\begin{bmatrix} 1 & 3 & 0 \\ 3 & 10 & c \\ 0 & c & 4 \end{bmatrix}$$

is positive definite is given by

- (a) $-\sqrt{40} \le c \le \sqrt{40}$ (b) $-2 \le c \le 2$
- (c) $-\sqrt{40} < c < \sqrt{40}$ (d) -2 < c < 2
- (e) $0 \le c \le 40$.

4. Let \mathcal{D} be the triangular domain given by $0 \le y \le 3$, $(y/3) - 1 \le x \le y \le 3$ 1 - (y/3). Then

$$\int \int_{\mathcal{D}} \left(e - x^5 e^{\sqrt{1 + y^2}} \right) dA =$$

- (a) 3e
- (b) 0
- (c) 6e
- (d) $e e^{\sqrt{244}}$
- (e) Undefined.

- 5. Let \mathcal{R} be the solid ball given by $x^2 + (y-2)^2 + (z+4)^2 \leq 1$, let $\mathcal{S} = \partial \mathcal{R}$, oriented by the outward normal, and let $\mathbf{F}(x, y, z) =$ $\langle 2x, y + \cos(z), 3z \rangle$, then the flux $\int \int_{\mathcal{S}} \mathbf{F} \cdot d\mathbf{S}$ equals
 - (b) (a) 2π 4π
 - (c) (d) 6π 8π
 - (e) 0.

- 6. Let \mathcal{R} be the region given by $1 \leq x^2 + y^2 + z^2 \leq 4$ and $z \geq 0$, then $\int \int \int_{\mathcal{R}} 3\cos\left((x^2 + y^2 + z^2)^{\frac{3}{2}}\right) dV \text{ equals}$
 - (a) $2\pi[\sin(8) 1]$ (b) $\pi[\sin(8) 1]$
 - (c) $2\pi[\sin(8) \sin(1)]$ (d) $\pi[\sin(8) \sin(1)]$

 $(e) \quad 0$

- 7. Let \mathcal{D} be the entire first quadrant $x, y \geq 0$ in the x-y plane. The value of $\int \int_{\mathcal{D}} x e^{-x^2 - y} dA$ equals

 - (a) -2 (b) 1/2
 - (c)
- (d) -1/2
- (e) Undefined.

- 8. Given that the vector field $\mathbf{F}(x,y,z) = \langle 2x\cos(y), -x^2\sin(y) + y \rangle$ e^z , $ye^z\rangle$ is conservative, find the line integral $\int_{\mathcal{C}}\mathbf{F}\bullet d\mathbf{r}$, from the point A = (0,0,0) to the point $B = (1,\pi,\ln(2))$ along the path $\mathbf{r}(t) = \langle t^{5/3} , 4 \arctan(t) , \ln \sqrt{3t^2 + 1} \rangle$. (Hint: Find a potential function ϕ for \mathbf{F})

 - (a) $-1 + 2\pi$ (b) $1 + \pi + \ln(2)$
 - (c) $1 + \pi$ (d) 0
- - (e) $4\arctan(\pi)$.

- 9. Consider the function $f(x,y) = \frac{1}{x^2 + y^2}$ defined on the domain $\mathcal{D} = \{(x,y) : x^2 2x + y^2 \leq 0\}$ (Hint: It is a closed disk of radius 1). Which of the following statements is true?
 - (a) f has maximum 1 and no minimum
 - (b) f has maximum 2 and no minimum
 - (c) f has no maximum and minimum 1
 - (d) f has maximum 4 and minimum 1/4
 - (e) f has no maximum and minimum 1/4

10. Let \mathcal{C} be the closed curve in \mathbb{R}^2 joining, by straight line segments, the points (-1,1), (3,0), (1,4), (-2,2) and back to (-1,1) (in the given order). If $\mathbf{F}(x,y) = \langle e^x y^2/2 + \arctan(x), e^x y + 2y \rangle$, then $\int_{\mathcal{C}} \mathbf{F} \bullet d\mathbf{r}$ equals

3

- (a) 4 (b)
- (c) e^4 (d) e^3
- (e) 0

11. Determine the volume of the region bounded above by the paraboloid $z = 10 - x^2 - y^2$ and below by the cone $z^2 = 9(x^2 + y^2)$, with $z \ge 0$.

12. Find and classify the critical point(s) of the function

$$f(x,y) = \frac{x^3}{2} + \frac{y^3}{2} - 3xy + 2.$$

13. A box without top is made of material for the bottom costing $5/m^2$, the front and back $1/m^2$, and the sides $2/m^2$. The total cost is fixed at \$3,000. Find the dimensions that will maximize the volume.

14. Set up, but **do not** evaluate, a double integral (including the limits of integration) computing the surface area of S which is the part of the cylinder $x^2+4y^2=4$ in the **first octant** below the plane x+y+2z=3.

15. Evaluate $\int_{\mathcal{C}} \mathbf{F} \bullet d\mathbf{r}$ where $\mathbf{F} = \langle ye^x, x + e^x, z^2e^z \rangle$ and \mathcal{C} is the curve which is the intersection of the plane z = 3 - x - y and the cylinder $x^2 + y^2 = 1$, oriented from the point (1,0,2) on the curve to the point (0,1,2) on the curve. [Hint: Use Stokes's Theorem]