

FACULTY OF SCIENCE Department of Mathematics and Statistics

Mathematics 607

Algebra III

Calendar Description: A sophisticated introduction to modules over rings, especially commutative rings with identity. Major topics include: snake lemma; free modules; tensor product; hom-tensor duality; finitely presented modules; invariant factors; free resolutions; and the classification of finitely generated modules over principal ideal domains. Adjoint functors play a large role. The course includes applications to linear algebra, including rational canonical form and Jordan canonical form.

Prerequisites: Pure Mathematics 431 or Mathematics 411 or consent of Department.

Note: Pure Mathematics 431 is recommended.

Antirequisite: Pure Mathematics 511 and Pure Mathematics 611

Textbook: Hungerford, Algebra

(see Course Descriptions under the year applicable: http://www.ucalgary.ca/pubs/calendar/)

Syllabus

<u>Topics:</u>	Number of Hours
Recap of rings and ideals; isomorphism theorem	3
Integral domains; maximal and prime ideals; principal ideal domains (PIDs)	3
The ascending chain condition; unique factorization in PIDs	3
Modules over rings; submodules; quotient modules; linear transformations and kernels	3
Direct sums of modules; free modules; basis and rank; the matrix of a linear transformation	3
Tensor product; extension of scalars	3
Symmetric and alternating products; determinants	3
Cyclic and torsion modules over PIDs	3
The structure of finite abelian groups; canonical forms of matrices	3
Finitely generated modules over PIDs; invariant factors	3
Presentations of modules; computing invariant factors	3
Exact sequences; hom and tensor functors and their adjointness, left and right exactness	3
TOTAL	.: 36

Time permitting: Projective, injective and flat modules

* * * * * * * * *

Last modified on 2016-04-26 yf/rs