

Mathematics 521 / 621

Complex Analysis II / Complex Analysis

(see Section 3.5C of Faculty of Science <u>www.ucalgary.ca/pubs/calendar/current/sc-3-5.html</u> and Course Descriptions: <u>http://www.ucalgary.ca/pubs/calendar/current/course-main.html</u>)

Syllabus

Topics	Number of
Complex numbers: algebraic and geometric representation, topology	2
Complex functions: Cauchy Riemann equations, analyticity, power series, trig functions	6
Analytic functions as mappings: arcs, conformal mappings, linear fractional transformations, elementary Riemann surfaces, Schwarz lemma, Max modulus principle	4
Complex integration: line integrals, Cauchy's theorem, Cauchy Integral formula, local properties of analytic functions, winding number, calculus of residues, argument principle, definite integrals	8
Series and product development: Taylor and Laurent series, singularities, Casorati-Weierstrauss, Picard theorems, infinite products, normal families, equicontinuity, Arzela-Ascoli theorem	4
Riemann mapping theorem for simply connected regions	4
Harmonic functions: Dirichlet problem, applications, maximum modulus principle	4
Analytic continuation: Schwarz reflection, along arcs, Monodromy theorem, Riemann surfaces	4
TOTAL HOURS	36

* * * * * * *

2012:07:01 WEC Name change from PMAT 521 Fall 2012