Fall 2008 PMAT 415 L0 test 1 11:00. 22.09.2008
time: 30minutes

NO CALCULATORS

ID NUMBER: Solutions to Lab Test 1

Do not put your name on this page

Problem 1: [5 pts] Assume that $\mathcal{P} A=\mathcal{P} B$. Prove that $A=B$.

Proof. We have to show that $x \in B$ for every $x \in A$ and $x \in A$ for every $x \in B$. The assertion in the problem is symmetric in A and B. Hence it is sufficient to show that $x \in A$ for every $x \in B$.

Let $x \in B$.
Then $\{x\} \subseteq B$ and hence $\{x\} \in \mathcal{P} B=\mathcal{P} A$ implying that $\{x\} \in \mathcal{P} A$. This in turn implies that $\{x\} \subseteq A$ and therefore that $x \in A$.

Of course there are several other ways proving the statement. For example, show first that $\bigcup \mathcal{P}(A)=A$.

Problem 2: [5 pts] Let \mathcal{A} be a set of functions such that for any f and g in \mathcal{A}, either $f \subseteq g$ or $g \subseteq f$. Show that $\bigcup \mathcal{A}$ is a function.

Proof. Every function $f \in \mathcal{A}$ is a set of ordered pairs and hence $\bigcup \mathcal{A}$ is a set of ordered pairs, that is a relation. In order to show that the relation $\bigcup \mathcal{A}$ is a function we have to prove that for all $x \in \operatorname{dom} \bigcup \mathcal{A}$ and $y, z \in \operatorname{fld} \bigcup \mathcal{A}$:

$$
\langle x, y\rangle \in \bigcup \mathcal{A} \&\langle x, z\rangle \in \bigcup \mathcal{A} \quad \text { implies } \quad z=y
$$

Let $\langle x, y\rangle \in \bigcup \mathcal{A} \&\langle x, z\rangle \in \bigcup \mathcal{A}$.
Then there exists $f \in \mathcal{A}$ so that $\langle x, y\rangle \in f$, that is $f(x)=y$ and there exists $g \in \mathcal{A}$ so that $\langle x, z\rangle \in g$, that is $g(x)=z$.

We may assume without loss of generality that $f \subseteq g$. Which implies that $\langle x, y\rangle \in g$, that is $g(x)=y$.
Hence, $g(x)=y$ and $g(x)=z$ implying that $y=z$ because g is a function.

