PMAT 421 Practice Midterm 2-Solution

For 1)

Evaluate $\int \overline{z} \, dz$ where the curve c is a part of |z - i| = 2 from 3i to -2 + i. Since \bar{z} is nowhere analytic we have to used the definition of the integral first, parametrization of the circle : $z(t) = i + 2e^{it}$ $t \in \left|\frac{\pi}{2}, \pi\right|$ then $dz = z'(t) dt = 2ie^{it} dt$ and $\oint_c \overline{z} dz = 2i \int_{\underline{\pi}}^{\ddot{\pi}} (-i + 2e^{-it}) e^{it} dt =$ $= 2\left[\frac{e^{it}}{i}\right]_{\pi}^{\pi} + 4i\left[\pi - \frac{\pi}{2}\right] = -2i\left[e^{i\pi} - e^{i\frac{\pi}{2}}\right] + 2i\pi = -2i\left[-1 - i\right] + 2i\pi = -2i\pi = -2i\left[-1 - i\right] + 2i\pi = -2i\pi = -2i\left[-1$ $= -2 + 2i(\pi + 1).$ For 2) (a) $\int \frac{e^z}{z^2 + 4} dz = \int \frac{e^z}{z + 2i} \cdot \frac{1}{z - 2i} dz = 2\pi i \left(\frac{e^z}{z + 2i}\right)_{z = 2i} = \frac{\pi}{2} e^{2i} = \frac{\pi}{2} (\cos 2 + i \sin 2)$ since only $z_0 = 2i$, a simple pole, is inside |z - i| = 2 use CIF- Cauchy Integral formula (b) since both singular points are in we have to $c_{1,2}: |z \mp 2i| = \frac{1}{2}$ split |z| = 3 into two small circles around $z = \pm 2i$ then as above $\int \frac{e^z}{z^2 + 4} dz = \int \frac{e^z}{z^2 + 4} dz + \int \frac{e^z}{z^2 + 4} dz = \int \frac{e^z}{z + 2i} \cdot \frac{1}{z - 2i} dz + \int \frac{e^z}{z - 2i} \cdot \frac{1}{z + 2i} dz = \int \frac{e^z}{z - 2i} dz + \int \frac{e^z}{z - 2i} \cdot \frac{1}{z - 2i} dz = \int \frac{e^z}{z - 2i} dz + \int \frac{e^z}{z - 2i} dz = \int \frac{e^z}{z - 2i} dz = \int \frac{e^z}{z - 2i} dz + \int \frac{e^z}{z - 2i} dz = \int \frac{e^z}{z - 2i} dz$ $= \frac{\pi}{2}e^{2i} + 2\pi i \left(\frac{e^z}{z-2i}\right)_{z=-2i} = \frac{\pi}{2}e^{2i} - \frac{\pi}{2}e^{-2i} = \pi i \sin 2.$ For 3) For $\int \frac{2z+1}{z^2-z} dz$ in a) c is the line segment from i to 2 not passing through z = 0, 1 $\frac{2z+1}{z^2-z} = \frac{3}{z-1} - \frac{1}{z}$ thus F(z) = 3Log(z-1) - Logzin the plane minus the branch cut $\{\operatorname{Re}(z-1) \leq 0, \operatorname{Im} z = 0\}$ so the line segment from i to 2 is in the domain and $\int_{-\frac{z^2}{z^2 - z}}^{2\frac{z^2 + 1}{z^2 - z}} dz = F(2) - F(i) = -\frac{5}{2}\ln 2 - \frac{7}{4}\pi i$ since $F(2) = 3 \ln 1 - \ln 2 = -\ln 2$ $F(i) = 3Log(i-1) - Log(i) = 3\left[\ln\sqrt{2} + \frac{3}{4}\pi i\right] - \ln 1 - \frac{\pi}{2}i = \frac{3}{2}\ln 2 + \frac{7}{4}\pi i;$ in b) c is the circle $|z| = \frac{1}{2}$ with only z = 0 inside $\int \frac{2z+1}{z^2-z} \, dz = \int \frac{2z+1}{z-1} \cdot \frac{1}{z} \, dz = 2\pi i \left[\frac{2z+1}{z-1} \right]_{z=0} = -2\pi i.$

For 4) For
$$\oint_{|z|=2} \frac{\cos z}{z^3} dz$$

the integrand function is analytic for $z \neq 0$ so we can use the extended Cauchy Integral formula n = 2:

$$\oint_{|z|=2} \frac{\cos z}{z^3} \, dz = 2\pi i \, \cdot \frac{1}{2!} g''(0) = -\pi i$$

where $g(z) = \cos z$, $g'(z) = -\sin z$, $g''(z) = -\cos z$

For 5) For $\int_{c} \frac{Log z}{z} dz$ in (a)

the line segment from 1 to 1 - i does not cross the principal branch cut we can find F(z) in the domain "complex plane minus cut"

$$F(z) = \frac{1}{2} (Logz)^2 \qquad \text{then } \int_{1}^{1-i} \frac{Log \ z}{z} dz = F(1-i) - F(1) = \frac{1}{2} \left[Log^2(1-i) - Log^2 1 \right] = \frac{1}{2} \left[\ln \sqrt{2} - i\frac{\pi}{4} \right]^2 = \frac{1}{8} (\ln 2)^2 - \frac{\pi^2}{32} - i\frac{\pi}{8} \ln 2 \qquad \text{by Fund Th.of Calculus}$$
in (b)

the curve |z| = 1 crosses the branch cut so by Definition: $z(t) = e^{it}$ $t \in [-\pi, \pi]$ $z'(t) = ie^{it}$ and $\int_{c} \frac{Log \ z}{z} dz = \int_{-\pi}^{\pi} \frac{Log e^{it}}{e^{it}} ie^{it} dt = i \int_{-\pi}^{\pi} (it) dt = 0$ (odd function)

For 6)

Evaluate

 $\int z |z-1| dz$ where the curve c is a part of |z-1| = 5 where $\operatorname{Im} z \ge 0$.

Since z |z - 1| is nowhere analytic we have to used the definition of the integral first, parametrization of the curve : $z(t) = 1 + 5e^{it}$ $t \in [0, \pi]$

then
$$dz = z'(t) dt = 5ie^{it} dt$$
 and $\int_c z |z - 1| dz = 5 \int_0 (1 + 5e^{it}) 5ie^{it} dt =$
= $25 [e^{it}]_0^{\pi} + 125 \left[\frac{e^{2it}}{2}\right]_0^{\pi} = 25 [-1 - 1] + 0 = -50.$

For 7)

We know that $\left| \int_{a}^{a} \frac{e^{iz}}{\bar{z}} dz \right| \leq ML$

in a) $L = \frac{1}{2}2R\pi = 4\pi$ and $M = \max\left|\frac{e^{iz}}{\bar{z}}\right| = \max\frac{e^{-y}}{|z|} = \frac{e^4}{4}$ since $y \in [-4, 4]$ together the estimate is $ML = \pi e^4$; in b)

for M maximize top, minimize bottom: $L = \sqrt{3^2 + 4^2} = 5$ $\max e^{-y} = e^0 = 1$ since $y \in [0, 4]$

 $\min |z| = d$ -distance from the origin to the line segment draw the right angle triangle with sides 3, 4, 5, vertices -3, 0, 4ithe area of the triangle is $A = \frac{12}{2} = 6$ and also $A = \frac{5 \cdot d}{2} \rightarrow d = \frac{12}{5}$ together $\frac{e^{-y}}{|z|} \le \frac{5}{12}$ and the estimate is $ML = \frac{25}{12}$ Note: It could be shown that $\max \frac{e^{-y}}{\sqrt{x^2 + y^2}} = \frac{1}{3}$ on the line 3y - 4x = 12by investigating min of the reciprocal squared: $h(y) = e^{2y} \left(y^2 + \left(\frac{3}{4}y - 3 \right)^2 \right)$ on [0, 4], but it is harder. For 8) $\begin{vmatrix} \int_{c} e^{\bar{z} \operatorname{Im} z} dz \\ e^{\bar{z} \operatorname{Im} z} \end{vmatrix} \leq ML = 2\pi R e^{\frac{R^2}{2}} \text{ since } L = 2\pi R \quad \text{and to find } M : \\ e^{\bar{z} \operatorname{Im} z} \end{vmatrix} = e^{xy} \text{ since } \operatorname{Re}(\bar{z} \operatorname{Im} z) = \operatorname{Re}(xy - iy^2) = xy \end{aligned}$ we need maximum of f(x, y) = xy on the constraint $g(x, y) = x^2 + y^2 = R^2$ solve $\nabla f = \lambda \nabla g$ $y = \lambda 2x$ $x = \lambda 2y$ $\frac{y}{x} = \frac{x}{y}$ $y = \pm x$ (minima on the line y = -x) maxima on the line $y = x \rightarrow x^2 + y^2 = R^2 \rightarrow 2x^2 = R^2$ so at the points $\left(\pm \frac{R}{\sqrt{2}}, \pm \frac{R}{\sqrt{2}}\right)$ max.value is $\frac{R^2}{2}$ and then $M = e^{\frac{R^2}{2}}$ For 9) For $\int z^{-\frac{1}{2}} dz$ where $z^{-\frac{1}{2}}$ is the branch where $\arg z \in [0, 2\pi)$ $F(z) = 2z^{\frac{1}{2}}$ we can use Fund.Theorem for any z not on the branch cut $\{z; \text{Im } z = 0, \text{Re } z \ge 0\}$!!! $\int z^{-\frac{1}{2}} dz = F(i) - F(-1-i) = 2e^{\frac{1}{2}\log i} - 2e^{\frac{1}{2}\log(-1-i)} =$ thus(evaluate $\log(-1-i) = \ln\sqrt{2} + i\frac{5\pi}{4}$ and $\log i = \ln 1 + i\frac{\pi}{2}$) $= 2\left[e^{i\frac{\pi}{4}} - e^{\ln\sqrt[4]{2} + i\frac{5}{8}\pi}\right] = 2\left[\frac{1}{\sqrt{2}} + i\frac{1}{\sqrt{2}} - \sqrt[4]{2}\left(\cos\frac{5}{8}\pi + i\sin\frac{5}{8}\pi\right)\right] =$ $=\sqrt{2} - 2^{\frac{5}{4}} \cos \frac{5\pi}{8} + i \left(\sqrt{2} - 2^{\frac{5}{4}} \sin \frac{5}{8}\pi\right)$ also $e^{i\frac{5}{8}\pi} = e^{i\frac{1}{2}\pi} e^{i\frac{1}{8}\pi} = i(\cos\frac{\pi}{8} + i\sin\frac{\pi}{8}) = -\sin\frac{\pi}{8} + i\cos\frac{\pi}{8}$ For 10) $\sum_{n=1}^{\infty} n! \left(\frac{z}{n}\right)^n = \sum_{n=1}^{\infty} n! \frac{1}{n^n} z^n$ use Ratio Test $\left|\frac{a_{n+1}}{a_n}\right| = \left|\frac{(n+1)!}{(n+1)^{n+1}} \cdot \frac{n^n}{n!}\right| = (\frac{n}{n+1})^n = \left(1 - \frac{1}{n+1}\right)^n \to \frac{1}{e} = L$ using the limit $\left(1+\frac{a}{n}\right)^n \to e^a$ as $n \to +\infty$ we know that $R = \frac{1}{L} = e$ it means the series is abs.convergent for |z| < eand is abs. divergent for |z| > e.

For 11)

the function $f(z) = \frac{1}{z^2 + z}$ is analytic except at z = 0 and z = -1.

if the center is -1 we have two possible domains 0 < |z+1| < 1 and |z+1| > 1since the distance from -1 to the nearest sing point 0 is 1 Now the point 3i is in the latter one, we need negative powers of (z+1) $f(z) = \frac{1}{z(z+1)} = \frac{1}{z+1} \cdot \frac{1}{z+1-1} = \frac{1}{(z+1)^2} \cdot \frac{1}{1-\frac{1}{z+1}} = \frac{1}{(z+1)^2} \sum_{n=0}^{\infty} \left(\frac{1}{z+1}\right)^n = \frac{1}{(z+1)^2} \sum_{n=0}^{\infty} \left(\frac{1}{z+1}\right)^n = \frac{1}{(z+1)^2} \left($ (using the sum of geom. series $\sum_{n=0}^{\infty} w^n = \frac{1}{1-w}$ for $|w| < 1, w = \frac{1}{z+1}$) $=\sum_{n=0}^{\infty} \frac{1}{(z+1)^{n+2}} = \sum_{k=2}^{\infty} \frac{1}{(z+1)^k} \text{ for } \left|\frac{1}{z+1}\right| < 1 \text{ i.e. } |z+1| > 1.$ For 12) Defined for $z \neq \pm i$ denote $w = \frac{1}{z^2 + 1}$ then the series is a geometric one , convergent for |w| < 1 and the sum is $\sum_{n=1}^{\infty} w^n = \frac{w}{1-w}$ thus the original series is convergent for $|z^2+1| > 1$ and the sum $\sum_{n=1}^{\infty} \left(\frac{1}{z^2+1}\right)^n = \frac{\frac{1}{z^2+1}}{1-\frac{1}{z^2+1}} = \frac{1}{z^2}$ for $z \neq 0, \pm i$ So far we have 3 holes $z = 0, \pm i$ Now the condition $|z^2 + 1| > 1$ is satisfied if both $|z \pm i| > 1$ since $|z^2 + 1| = |z - i| |z + i|$ therefore any point outside the circles $|z \pm i| = 1$ will be OK in more detail: $|z^{2} + 1| > 1$ means $(x^{2} - y^{2} + 1)^{2} + 4x^{2}y^{2} > 1$ so e.g. if x = 0 $|1 - y^2| > 1$ no $y \in (-1, 1)$ since $1 - y^2 > 1$ never true for |y| > 1 $y^2 - 1 > 1$ gives $|y| > \sqrt{2}$ on the y-axis; if y = 0 $x^2 + 1 > 1$ any x; the whole x- axis except the origin generally if we solve $(x^2 - y^2 + 1)^2 + 4x^2y^2 > 1$ $x^4 + y^4 - 2x^2y^2 + 2x^2 - 2y^2 + 1 + 4x^2y^2 > 1$ $(x^2 + y^2)^2 + 2(x^2 - y^2) > 0$ the curve $(x^2 + y^2)^2 + 2(x^2 - y^2) = 0$ in polar coordinates $r^2 = -2\cos 2\theta$lemniscata=the set of all points with the product of distances to two foci $\pm i$ being constant therefore all points outside that lemniscata satisfied the condition; this set is a little bigger than outside two circles. For 13) zis analytic except at y 1 0 the function f(z)

the function
$$f(z) = \frac{1}{z^2 + z - 2}$$
 is analytic except at $z = 1, -2$
for a) the centre is 1 so in powers of $(z - 1)$
in $0 < |z - 1| < 3$ —distance from 1 to -2
 $f(z) = \frac{z}{z^2 + z - 2} = \frac{z}{(z - 1)(z + 2)} = \frac{1}{(z - 1)} \cdot \frac{(z + 2) - 2}{(z + 2)} = \frac{1}{(z - 1)} \left[1 - \frac{2}{(z + 2)} \right] = \frac{1}{(z - 1)} \left[1 - \frac{2}{3 + (z - 1)} \right] =$

$$= \frac{1}{(z-1)} \left[1 - \frac{2}{3} \cdot \frac{1}{1 + \frac{z-1}{3}} \right] = \frac{1}{(z-1)} - \frac{2}{3} \frac{1}{(z-1)} \sum_{n=0}^{\infty} (-1)^n \frac{(z-1)^n}{3^n} = (\text{separate } n = 0)$$

$$= \frac{1}{(z-1)} - \frac{2}{3} \frac{1}{z-1} - \frac{2}{3} \sum_{n=1}^{\infty} (-1)^n \frac{(z-1)^{n-1}}{3^n} = \frac{1}{3(z-1)} + \frac{2}{9} \sum_{k=0}^{\infty} (-1)^k \frac{(z-1)^k}{3^k}$$
OR P.Fr. first
$$\frac{z}{z^2 + z - 2} = \frac{A}{z-1} + \frac{B}{z+2} = \frac{1}{3(z-1)} + \frac{2}{3} \cdot \frac{1}{(z-1)+3} = \frac{1}{3(z-1)} + \frac{2}{3(z-1)} = \frac{1}{3(z-1)} + \frac{2}{9} \sum_{n=0}^{\infty} (-1)^n \frac{(z-1)^n}{3^n}$$
using $\frac{1}{1+w} = \sum_{n=0}^{\infty} (-1)^n w^n$ for any $|w| < 1$ where $w = \frac{z-1}{3}$
thus $b_{-1} = \frac{1}{3}$ and $a_n = \frac{2(-1)^n}{3^{n+2}}, a_9 = \frac{-2}{3^{11}}.$

the centre is 0 so in powers of z; we need P.Fr.

$$f(z) = \frac{z}{z^2 + z - 2} = \frac{1}{3(z - 1)} + \frac{2}{3(z + 2)} = \frac{1}{3z\left(1 - \frac{1}{z}\right)} + \frac{2}{3 \cdot 2\left(1 + \frac{z}{2}\right)} = \frac{1}{3z} \sum_{n=0}^{\infty} \left(\frac{1}{z}\right)^n + \frac{1}{3} \sum_{n=0}^{\infty} (-1)^n \frac{z^n}{2^n} = \sum_{k=1}^{\infty} \frac{1}{3z^k} + \sum_{n=0}^{\infty} \frac{(-1)^n}{3 \cdot 2^n} z^n$$
the first series is covergent for $\left|\frac{1}{z}\right| < 1$ and the second one for $\left|\frac{z}{z}\right| < 1$

the first series is covergent for $\left|\frac{1}{z}\right| < 1$ and the second one for $\left|\frac{z}{2}\right| < 1$ together 1 < |z| < 2 as required; $h_{z} = \frac{1}{2}$ for $k = 1, 2, \dots, q = \frac{(-1)^{n}}{2}$ for n = 0, 1, 2

$$b_k = \frac{1}{3}$$
 for $k = 1, 2, ..; a_n = \frac{(-1)^n}{3 \cdot 2^n}$ for $n = 0, 1, 2, ..$