PMAT 421

Practice Midterm 2

1. Evaluate $\int_{c} \bar{z} d z$ where the curve c is a part of $|z-i|=2$ from $3 i$ to $-2+i$.
2. Evaluate $\int_{c} \frac{e^{z}}{z^{2}+4} d z$, where c is positively oriented circle
(a) $|z-i|=2$;
(b) $\quad|z|=3$.
3. Evaluate $\int_{c} \frac{2 z+1}{z^{2}-z} d z$ where
(a) c is the line segment from i to 2 ;
(b) c is the circle $|z|=\frac{1}{2}$.
4. Evaluate $\oint_{|z|=2} \frac{\cos z}{z^{3}} d z$. Explain.
5. Evaluate $\int_{c} \frac{\log z}{z} d z$, where c is
(a) the line segment from 1 to $1-i$;
(b) $\quad|z|=1$.
6. Evaluate
$\int_{c} z|z-1| d z$ where the curve c is a part of $\quad|z-1|=5$ where $\operatorname{Im} z \geq 0$. \backslash
7. Estimate $\int_{c} \frac{e^{i z}}{\bar{z}} d z$ if the curve c is
(a) half of a circle $|z|=4$ from $-4 i$ to $4 i$;
(b) the line segment from -3 to $4 i$.
8. Show that $\left|\int_{c} e^{\bar{z} \operatorname{Im} z} d z\right| \leq 2 \pi e^{\frac{R^{2}}{2}} R$ where c is the circle $|z|=R$ positively oriented. HINT:You may use Langrange multipliers method to find M.
9. Evaluate $\int_{c} z^{-\frac{1}{2}} d z$ where $z^{-\frac{1}{2}}$ is the branch where $\arg z \in[0,2 \pi)$ and c is a curve connecting $-1-i$ to i, not crossing the branch cut.
10. Find the radius of convergence of $\sum_{n=1}^{\infty} n!\left(\frac{z}{n}\right)^{n}$.
11. Find a Laurent series around $\quad z_{0}=-1$ of $\quad f(z)=\frac{1}{z^{2}+z}$ in a domain containing the point $3 i$. Describe the domain.
12. Find the condition on z such that $\sum_{n=1}^{\infty}\left(\frac{1}{z^{2}+1}\right)^{n}$ is convergent.Find the sum .
13. For $f(z)=\frac{z}{z^{2}+z-2}$
(a) find the Laurent series around $z_{0}=1$ particularly b_{1} and a_{9}, in a deleted neighborhood of 1 . Where is the series convergent?
(b) find the Laurent series around $z_{0}=0$ in the domain $1<|z|<2$.
