PMAT 421 WINTER 07 FINAL 3 hours

Note:Give the answers ,if possible in the form a+ib,a,b real. Each question is for 10 marks.

1. Find all values of

(a)
$$\frac{1}{(-\sqrt{3}-i)^i}$$
 (b) $arg\left[\frac{(1-i)^{10}}{(1+i)^6}\right]$.

- 2. Solve $\cos z = 3i$. Explain why we can always solve $\cos z = w_0$ for any complex w_0 .
- 3. For $f(z) = x^2 y^2 2xy + i(x^2 2xy)$, where z = x + iy, x, y real find whre f is differentiable and where analytic. explain the difference between necessary and sufficient C.R. conditions.
- 4. Show that $u(x,y) = x^3 3xy^2 2y + 5$ (a) is harmonic; (b) find a harmonic conjugate v; and (c) find f(z) = u(x,y) + iv(x,y) in terms of z.
- 5. Find the Laurent series for $f(z) = \frac{1}{(z-1)^2}$ around $z_0 = i$ in the domain containing 2. Describe the domain, find the formula for b_n .
- 6. Classify all singular points z_k of $f(z) = \frac{\cos z 1}{z^2(e^z 1)}$ and then find all $Res(z_k)$.

7. Evaluate

- (a) $\int_{c}^{1} \frac{1}{z} dz$ where c is any curve from -1 i to $i\sqrt{2}$ lying in the left part of the plane;
- (b) $\int_{c}^{1} \frac{1}{z} dz$ where c is the part of the circle from -1 i to $i\sqrt{2}$ lying in the left half of the complex plane
- 8. Prove or disprove that $|\sin z| \le 1$. State the theorem used.
- 9. Evaluate $\int_{0}^{\infty} \frac{\cos 2x}{x^2(x^2+1)} dx$ by means of the Residue Theorem. Explain all your steps.

10. For $w = e^{\pi z}$

- (a) show that the mapping is conformal for all z; is it one to one?
- (b) find the range;
- (c) sketch /describe the image of the set $\left\{z; \frac{1}{2} \leq \operatorname{Im} z \leq 1\right\}$ in the w- plane.