PMAT 421
 FINAL
 3 hours

1. Find all values (a) of $(-1)^{1-i} \quad(b)$ of $\sin (i-\pi)$ in the form $a+i b$ where a, b are real numbers.
2. Find all solutions of $\sin z=-i$ in the form $a+i b$ where a, b are real numbers.
3. Find all z for which $\quad \log z=-\log \frac{1}{z} \quad$ if
(a) $\log w=\log w \quad$ principal branch;
(b) $\log w$ is the branch where $\arg w \in[0,2 \pi)$.
4. Find the Laurent series of $f(z)=\frac{z}{z+4}$ around $z_{0}=i$ in the domain containing the point 10 .
Find b_{2} and the domain where is the series convergent.
5. Is $|\sin z| \leq 1$ for all complex z ? Explain. State the theorem used.
6. Evaluate $I=\int_{c} \frac{1}{\sqrt{z}} d z$ where c is the curve from $-i$ to $1+i$ not crossing the principal branch cut of the square root function. $(I=a+i b, a, b$ real $)$
7. For $f(z)=\frac{1}{z} e^{\frac{z^{2}+2}{z}}$
(a) classify all singularities; (b) find the residue at $z_{0}=0$.
8. Evaluate $\int_{0}^{\infty} \frac{\cos \frac{\pi}{4} x}{x^{4}-16} d x$ by means of Residue Theorem. Explain all your steps.
9. Evaluate $\int_{0}^{2 \pi} \frac{\sin 3 \theta}{5-3 \sin \theta} d \theta$ by means of Residue Theorem.Explain all your steps.
10. For $w=z-\frac{1}{z}$ find
(a) where the mapping is conformal;
(b) the image of the circle $|z|=2$;
(c) the image of the y-axis minus the origin;
(d) the image of the unit circle in the w plane.
