Pmat $421 \quad$ W09

Assignment \# 1 due by Jan. 23,2009

Each questions is worth 5 points.

1. Express z in the form $a+i b$, with a, b real where $z=\frac{(1+i)(3-i)(-2-i)}{i(3+4 i)(5-i)}$.
2. Find the sum $\sum_{n=0}^{300} i^{n}$.
3. Express z in the form $a+i b$, with a, b real where $z=\frac{(-1-i)^{3}}{(-\sqrt{3}+i)^{2}}$ use the polar from of $-1-i$ and $-\sqrt{3}+i$.Find (principal branch) Arg of z.
4. Show that $|z+w|^{2}+|z-w|^{2}=2|z|^{2}+2|w|^{2}$ for any complex z and w.
5. Solve $\quad z^{\frac{4}{3}}+2 i=0$ i.e. find all possible z in the form $a+i b, a, b$ real.
6. Find all z for which (a) $\operatorname{Im} \frac{1}{z}=-\operatorname{Im} z \quad$ (b) $\quad \operatorname{Re} \frac{1}{z}=-\operatorname{Re} z$.
7. Find all roots $(-8)^{\frac{1}{3}}$.
8. Define the branch of the argument where $\arg z=\theta \in[0,2 \pi)$ in terms of x and y for any $z=x+i y, z \neq 0$

For which z the following is true $\arg \bar{z}=-\arg z$ (the branch from above).
9. Find all accumulation points of the set $\left\{(-i)^{n} ; n=1,2,3, \ldots\right\}$.
10. Describe or sketch the $\operatorname{set}\left\{z ; \operatorname{Im} \frac{1}{z} \geq \frac{1}{6}\right\}$.Is the set open, closed, bounded,connected?Explain.

