PMAT 505 ASSIGNMENT 4 Due November 22, 2010 [20] 1. Munkres p.144, 2. | 2. | Answer each of the following "True" or "False." If False, procounterexample. Note that all counterexamples, except for one, | can be | |----|--|-------------------------------------| | | found using suitable subspaces of \mathbb{R} . | [20] | | | (i) $\operatorname{Int}(A \cup B) = \operatorname{Int}(A) \cup \operatorname{Int}(B)$ | | | | (ii) $\operatorname{Int}(A \cap B) = \operatorname{Int}(A) \cap \operatorname{Int}(B)$ | | | | (iii) $\operatorname{Int}(\operatorname{Int}(A)) = \operatorname{Int}(A)$ | | | | (iv) $\operatorname{Bd}(\operatorname{Bd}(A)) = \operatorname{Bd}(A)$ | | | | (v) Any quotient space of a T_1 space is T_1 | | | | (vi) Any quotient space of a metric space is T_2 | | | | (vii) Let Top_q have as objects all topological spaces, and as morall quotient maps. Then Top_q is a category. | phisms | | | (viii) If (X, \mathcal{T}) is T_2 and \mathcal{T}' is another topology for X with T_2 then (X, \mathcal{T}') is also T_2 . | $\mathcal{T}\subseteq\mathcal{T}',$ | | | (ix) An infinite product of discrete spaces (with the product to is also discrete. | pology) | | | (x) The space \mathbb{R}_l is T_3 . | | | }. | (a) In the category Top , prove that any epimorphism is su and any monomorphism is injective. | rjective | | | (b) In the category $Haus$, show that an epimorphism need surjective. | not be [20] | | 1. | Prove that $ \text{hom}_{Top}(\mathbb{R}, \mathbb{R}) = \mathbf{c}$, i.e. the cardinality of all confunctions from the reals to the reals equals \mathbf{c} , the cardinality continuum. | | | | continuani. | [10] | | ó. | State and prove the dual result to Theorem 22.2 for inclusion r | naps. [10] | | j. | Munkres, p.171, 4. | [20] | | | | | | | | |