PMAT 505 ASSIGNMENT 4 Due November 22, 2010

[20]

1. Munkres p.144, 2.

2.	Answer each of the following "True" or "False." If False, procounterexample. Note that all counterexamples, except for one,	can be
	found using suitable subspaces of \mathbb{R} .	[20]
	(i) $\operatorname{Int}(A \cup B) = \operatorname{Int}(A) \cup \operatorname{Int}(B)$	
	(ii) $\operatorname{Int}(A \cap B) = \operatorname{Int}(A) \cap \operatorname{Int}(B)$	
	(iii) $\operatorname{Int}(\operatorname{Int}(A)) = \operatorname{Int}(A)$	
	(iv) $\operatorname{Bd}(\operatorname{Bd}(A)) = \operatorname{Bd}(A)$	
	(v) Any quotient space of a T_1 space is T_1	
	(vi) Any quotient space of a metric space is T_2	
	(vii) Let Top_q have as objects all topological spaces, and as morall quotient maps. Then Top_q is a category.	phisms
	(viii) If (X, \mathcal{T}) is T_2 and \mathcal{T}' is another topology for X with T_2 then (X, \mathcal{T}') is also T_2 .	$\mathcal{T}\subseteq\mathcal{T}',$
	(ix) An infinite product of discrete spaces (with the product to is also discrete.	pology)
	(x) The space \mathbb{R}_l is T_3 .	
}.	(a) In the category Top , prove that any epimorphism is su and any monomorphism is injective.	rjective
	(b) In the category $Haus$, show that an epimorphism need surjective.	not be [20]
1.	Prove that $ \text{hom}_{Top}(\mathbb{R}, \mathbb{R}) = \mathbf{c}$, i.e. the cardinality of all confunctions from the reals to the reals equals \mathbf{c} , the cardinality continuum.	
	continuani.	[10]
ó.	State and prove the dual result to Theorem 22.2 for inclusion r	naps. [10]
j.	Munkres, p.171, 4.	[20]