PMAT 505 ASSIGNMENT 5 Due December 10, 2010

1.	Munkres p.199, 2.	[10]	

- 2. Munkres p. 199, 3. [10]
- 3. Munkres p. 199, 6^+ . Let $p: X \to Y$ be continuous, closed, and surjective. Show that if X is T_4 then so is Y [a hint can be found in the text]. [20]
- 4. Let X be a Hausdorff space having infinite cardinality.
 - (a) Show that there exists a non-empty open subset $U\subset X$ such that $X\setminus U$ is infinite.
 - (b) Show that there exist an infinite family of mutually disjoint nonempty subsets of X. [20]
- 5. Munkres, p.205, 6. [20]
- 6. Munkres, p.213, 7. [Hint: Start the proof by applying local compactness to the situation $x \in X$ and B is a closed subset with $x \notin B$, so that $X \setminus B$ is an open neighbourhood of x.] [20]