PMAT 607 L01 W 2010

ASSIGNMENT 1 Due January 29

- 1. In the category \mathcal{F} of fields and unit preserving homomorphisms, show that every morphism is a monomorphism. [15]
- 2. Give an example of a category in which every morphism is an epimorphism. [15]
- 3. (a) In \mathcal{V}_k , the category of vector spaces over a field k and linear transformations, show that a morphism is a monomorphism iff it is injective.
 - (b) Show that a morphism in the category V_k is an epimorphism iff it is surjective. [15]
- 4. Show that whenever a composition of morphisms gf (in any category) is a monomorphism, then f is necessarily a monomorphism. State and prove a similar result for epimorphisms. [10]
- 5. A subspace A of a topological space X is called klopen iff $A = C \cap U$ for some closed set C and open set U. Show that A is klopen iff $\overline{A} \setminus A$ is closed. [15]
- 6. A subspace $A \subseteq X$ is called a retract of X if there is a map $r: X \to A$ such that $ri = 1_A$, where $i: A \hookrightarrow X$ is the inclusion map. Show that $\{0,1\}$ is not a retract of I = [0,1]. [10]
- 7. Let (X, \leq) be a poset and \mathcal{C}_X the corresponding category. [10]

 (a) What can you say about initial and terminal objects in \mathcal{C}_X ?

 (b) What can you say about monomorphisms and epimorphisms in \mathcal{C}_X ?
- 8. Classify the letters of the alphabet, as appearing on a standard English keyboard, up to homeomorphism. [10]