PMAT 607 L01 W 2010

ASSIGNMENT 3

Due March 16 in Lecture

- 1. (a) Show that a contractible space is path connected.
 - (b) Prove or disprove the statement : Q is contractible. [20]
- 2. Munkres, p.334 1. A subset $A \subseteq \mathbb{R}^n$ is said to be *star convex* if for some point $a_0 \in A$, all the line segments joining a_0 to other points of A lie in A.
 - (a) Find a star convex set that is not convex (a sketch will suffice).
 - (b) Show that if A is star convex then A is contractible.
 - (c) Show that a star convex set is simply connected. [20]
- 3. Munkres, p.186 11(b). Let $p:X \twoheadrightarrow Y$, $q:W \twoheadrightarrow Z$ be identification maps. Also suppose that X,Z (or W,Y) are both locally compact Hausdorff. Show that the map $p \times q: X \times W \twoheadrightarrow Y \times Z$ is also an identification map. [20]
- 4. Munkres, p.335 4. Suppose $A \subseteq X$ and $r: X \twoheadrightarrow A$ is a retraction. Show that

$$r_*: \pi_1(X; a_0) \to \pi_1(A; a_0)$$

is surjective. [20]

5. Let \mathcal{C} be the category of left R-modules, where R is a ring with unity $1 \neq 0$. Show that for any two objects $A, B \in \mathrm{Obj}(\mathcal{C})$, the coproduct and product and direct sum are all isomorphic, i.e. [20]

$$A\coprod B\approx A\prod B\approx A\oplus B.$$