PMAT 613 L01 Fall 2009 Assignment 4

Due Oct 27, 2009.

- 1. For any Galois connexion $\star: \mathcal{F} \to \mathcal{G}$ and $\dagger: \mathcal{G} \to \mathcal{F}$, show $X^{\star\dagger\star} = X^{\star}, X \in \mathcal{F}$ and $Y^{\dagger\star\dagger} = Y^{\dagger}, Y \in \mathcal{G}$.
- 2. Given field extensions L:M:K with L:K a splitting field for f(t) over K, show that L:M is a splitting field for f(t) over M.
- 3. Show that there is a euclidean construction for trisecting the angle $2\pi/5$.
- 4. Show that the euclidean construction of a regular 9-gon is impossible.
- 5. If L: K is a splitting field for f(t) over K with $\deg(f(t)) = n$, then $[L:K] \mid n!$. [See text p. 114 for a hint].
- 6. Show the Galois groups $\Gamma(\mathbb{R}, \mathbb{Q})$ and $\Gamma(\mathcal{A}_r, \mathbb{Q})$ are both trivial, where \mathcal{A}_r denotes the real algebraic numbers. [Hint: use the fact that \mathbb{R} is ordered, as well as any of its subfields, and show automorphisms will preserve positivity here.]
- 7. If K is a finite field and $f(t) \in K[t]$ is irreducible, show that f(t) is separable. [Hint: contradiction and 13.13(b).]
- 8. True or False, with counterexamples if false.
 - (a) If S is a finite set, $S \subseteq T$, and |S| = |T|, then S = T.
 - (b) The same is true for infinite sets.
 - (c) There is only one field homomorphism $\mathbb{Q} \to \mathbb{Q}$.
 - (d) If K, L are subfields of \mathbb{C} , then there exists at least one field homomorphism $K \to L$.
 - (e) Same question as (d) with the additional hypothesis $[K:\mathbb{Q}] = [L:\mathbb{Q}].$

- (f) Distinct automorphisms of a field K are linearly independent over K.
- (g) Linearly independent field monomorphisms are distinct.