STATISTICS 201
 "ELEMENTS OF FINITE PROBABILITY"

Calendar Description: $\quad \mathrm{H}(3-1 \mathrm{~T})$
Sets and events, counting techniques. Axioms of probability, conditioning and independence, Bayes' theorem. Random variables and their distributions. Expectations, variances and the law of large numbers.
Prerequisite: Mathematics 30 or Pure Mathematics 30, or Math II (Continuing Education).

Syllabus

Topics

Number of
Informal definitions of probability: classical frequency and axiomatic approach.
hours
1
4
Set theory: unions, intersections complements, differences, Cartesian products. Commutative, associative and distributive laws, de Morgan's law. Product sets. Classes of sets.

Counting principles: multiplication principle, combinations and permutations with and without repetitions. Binomial coefficients and theorem. Order partitions. Tree Diagrams.

Sample space events. Axioms of probability. Finite probability and equiprobable spaces. Uncountable uniform spaces.

Conditional probability and independence: formula of total probability and Bayes' theorem. Multiplication principle for conditional probabilities and probability trees. Repeated trials.

Random variables, their distribution. Expectations, variances and covariances and their applications. Simple continuous random variables. Joint distribution Tchebycheff's Inequality and the weak law of large numbers.

Binomial, Negative Binomial, Normal and Poisson distribution. Normal
5 approximation to the binomial distribution. Central limit theorem.

Probability vectors, stochastic matrices. Fixed points. Markov chains. Stationary distribution of regular Markov chains. Absorbing states.

TOTAL HOURS
36

