STAT 213 LOS

Solutions to assignment #2

x_i	y _i	x_i^2	$x_i y_i$
7	2	$7^2 = 49$	7(2) = 14
4 .	4	$4^2 = 16$	4(4) = 16
6	2	$6^2 = 36$	6(2) = 12
2	5	$2^2 = 4$	2(5) = 10
1	7	$1^2 = 1$	1(7) = 7
1	6	$1^2 = 1$	1(6) = 6
3	5	$3^2 = 9$	3(5) = 15

Totals:
$$\sum x_i = 7 + 4 + 6 + 2 + 1 + 1 + 3 = 24$$
$$\sum y_i = 2 + 4 + 2 + 5 + 7 + 6 + 5 = 31$$
$$\sum x_i^2 = 49 + 16 + 36 + 4 + 1 + 1 + 9 = 116$$
$$\sum x_i y_i = 14 + 16 + 12 + 10 + 7 + 6 + 15 = 80$$

b.
$$SS_{xy} = \sum x_i y_i = \frac{\left(\sum x_i\right)\left(\sum y_i\right)}{n} = 80 - \frac{(24)(31)}{7} = 80 - 106.2857143 = -26.2857143$$

c.
$$SS_{xx} = \sum x_i^2 - \frac{\left(\sum x_i\right)^2}{7} = 116 - \frac{(24)^2}{7} = 116 - 82.28571429 = 33.71428571$$

d.
$$\hat{\beta}_1 = \frac{SS_{xy}}{SS_{xy}} = \frac{-26.2857143}{33.71428571} = -.779661017 \approx -.7797$$

e.
$$\bar{x} = \frac{\sum x_i}{n} = \frac{24}{7} = 3.428571429$$
 $\bar{y} = \frac{\sum y_i}{n} = \frac{31}{7} = 4.428571429$

f.
$$\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x} = 4.428571429 - (-.779661017)(3.428571429)$$

= $4.428571429 - (-2.673123487) = 7.101694916 \approx 7.102$

g. The least squares line is
$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x = 7.102 - .7797x$$
.

11.15 From Exercise 11.14, $\hat{\beta}_0 = 7.10$ and $\hat{\beta}_1 = -.78$.

The fitted line is = 7.10 - .78x. To obtain values for , we substitute values of x into the equation and solve for.

x	y	$\hat{y} = 7.1078x$	$(y-\hat{y})$	$(y-\hat{y})^2$
7	2	1.64	.36	.1296
4	4.	3.98	.02	.0004
6	2	2.42	42	.1764
2	5	5.54	54	.2916
1	7	6.32	.68	.4624
1	6	6.32	32	.1024
3	5	4.76	.24	.0576
			$\sum (\nu - \hat{\nu}) = 0.02$	$SSE = \sum_{(y_1 - \hat{y})^2} 1.2204$

$$\sum (y - \hat{y}) = 0.02$$
 SSE = $\sum (y - \hat{y})^2 = 1.2204$

b.

c.

x	у	$\hat{y} = 14 - 2.5x$	$(y-\hat{y})$	$(y-\hat{y})^2$
7	2	-3.5	5.5	30.25
4	4	4	0	0
6	2	-1	3	9
2	5	9	-4	16
1	7	11.5	-4.5	20.25
1	6	11.5	-5.5	30.25
3	5	6.5	-1.5	2.25
			= -7	SSE = 108.00

b. As x increases, y tends to increase. Thus, there appears to be a positive, linear relationship between y and x.

c.
$$\hat{\beta}_1 = \frac{SS_{xy}}{SS_{xx}} = \frac{39.8571}{43.4286} = .9177616 \approx .918$$

 $\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x} = 3.4286 - .9177616(3.7143) = .0197581 \approx .020$

- d. The line appears to fit the data quite well.
- e. $\hat{\beta}_0 = .020$ The estimated mean value of y when x = 0 is .020. $\hat{\beta}_1 = .918$ The estimated change in the mean value of y for each unit change in x is .918.

These interpretations are valid only for values of x in the range from -1 to 7.

11.68)
$$y = \frac{SS_{xy}}{\sqrt{SS_{xx}}SS_{yy}}$$
 $\frac{y_1}{2}$ $\frac{y_1^2}{4}$ $\frac{y_2^2}{2}$ $\frac{y_3^2}{4}$ $\frac{y_4^2}{2}$ $\frac{y_5^2}{4}$ $\frac{y_5^2}{2}$ $\frac{y_5^2}{4}$ \frac

11.68) a. Some preliminary calculations are:

$$\sum x = 0 \qquad \sum x^2 = 10 \qquad \sum xy = 20$$

$$\sum y = 12 \qquad \sum y^2 = 70$$

$$SS_{xy} = \sum xy - \frac{\sum x \sum y}{n} = 20 - \frac{0(12)}{5} = 20$$

$$SS_{xx} = \sum x^2 - \frac{(\sum x)^2}{n} = 10 - \frac{0^2}{5} = 10$$

$$SS_{yy} = \sum y^2 - \frac{(\sum y)^2}{n} = 70 - \frac{12^2}{5} = 41.2$$

$$r = \frac{SS_{xy}}{\sqrt{SS_{xx}SS_{yy}}} = \frac{20}{\sqrt{10(41.2)}} = .9853$$

$$r^2 = .9853^2 = .9709$$

Since r = .9853, there is a very strong positive linear relationship between x and y.

Since $r^2 = .9709$, 97.09% of the total sample variability around is explained by the linear relationship between x and y.

b. Some preliminary calculations are:

$$\sum x = 0 \qquad \sum x^2 = 10 \qquad \sum xy = -15$$

$$\sum y = 16 \qquad \sum y^2 = 74$$

$$SS_{xy} = \sum xy - \frac{\sum x \sum y}{n} = -15 - \frac{0(16)}{5} = -15$$

$$SS_{xx} = \sum x^2 - \frac{\left(\sum x\right)^2}{n} = 10 - \frac{0^2}{5} = 10$$

(5

11,68) (continued)

$$SS_{yy} = \sum y^2 - \frac{\left(\sum y\right)^2}{n} = 74 - \frac{16^2}{5} = 22.8$$

$$r = \frac{SS_{xy}}{\sqrt{SS_{xx}SS_{yy}}} = \frac{-15}{\sqrt{10(22.8)}} = -.9934$$

$$r^2 = (-.9934)^2 = .9868$$

Since r = -.9934, there is a very strong negative linear relationship between x and y.

Since $r^2 = .9868$, 98.68% of the total sample variability around is explained by the linear relationship between x and y.

c. Some preliminary calculations are:

$$\sum x = 18 \qquad \sum x^2 = 52 \qquad \sum xy = 36$$

$$\sum y = 14 \qquad \sum y^2 = 32$$

$$SS_{xy} = \sum xy - \frac{\sum x \sum y}{n} = 36 - \frac{18(14)}{7} = 0$$

$$SS_{xx} = \sum x^2 - \frac{\left(\sum x\right)^2}{n} = 52 - \frac{18^2}{7} = 5.71428571$$

$$SS_{yy} = \sum y^2 - \frac{\left(\sum y\right)^2}{n} = 32 - \frac{14^2}{7} = 4$$

$$r = \frac{SS_{xy}}{\sqrt{SS_{xx}SS_{yy}}} = \frac{0}{\sqrt{5.71428571(4)}} = 0$$

Since r = 0, this implies that x and y are not related.

Since $r^2 = 0$, 0% of the total sample variability around is explained by the linear relationship between x and y.

11.68) (continued)

d. Some preliminary calculations are:

$$\sum x = 15 \qquad \sum x^2 = 71 \qquad \sum xy = 12$$

$$\sum y = 4 \qquad \sum y^2 = 6$$

$$SS_{xy} = \sum xy - \frac{\sum x \sum y}{n} = 12 - \frac{15(4)}{5} = 0$$

$$SS_{xx} = \sum x^2 - \frac{\left(\sum x\right)^2}{n} = 71 - \frac{15^2}{5} = 26$$

$$SS_{yy} = \sum y^2 - \frac{\left(\sum y\right)^2}{n} = 6 - \frac{4^2}{5} = 2.8$$

$$r = \frac{SS_{xy}}{\sqrt{SS_{xx}SS_{yy}}} = \frac{0}{\sqrt{26(2.8)}} = 0$$

$$r^2 = 0^2 = 0$$

Since r = 0, this implies that x and y are not related.

Since $r^2 = 0$, 0% of the total sample variability around is explained by the linear relationship between x and y.

3.9 a. Since the probabilities must sum to 1,

$$P(E_3) = 1 - P(E_1) - P(E_2) - P(E_4) - P(E_5) = 1 - .1 - .2 - .1 - .1 = .5$$

- b. $P(E_3) = 1 P(E_3) P(E_2) P(E_4) P(E_5)$ $\Rightarrow 2P(E_3) = 1 - .1 - .2 - .1 \Rightarrow 2P(E_3) = .6 \Rightarrow P(E_3) = .3$
- c. $P(E_3) = 1 P(E_1) P(E_2) P(E_4) P(E_5) = 1 .1 .1 .1 .1 = .6$
- $(3.\overline{10})$ a. If the simple events are equally likely, then

$$P(1) = P(2) = P(3) = \dots = P(10) = \frac{1}{10}$$

Therefore,

$$P(A) = P(4) + P(5) + P(6) = \frac{1}{10} + \frac{1}{10} + \frac{1}{10} = \frac{3}{10} = .3$$

$$P(B) = P(6) + P(7) = \frac{1}{10} + \frac{1}{10} = \frac{2}{10} = .2$$

- b. $P(A) = P(4) + P(5) + P(6) = \frac{1}{20} + \frac{1}{20} + \frac{3}{20} = \frac{5}{20} = .25$
 - $P(B) = P(6) + P(7) = \frac{3}{10} + \frac{3}{10} = \frac{6}{10} = .3$
- 3.14 a. The sample space for this experiment would consist of pairs of digits, indicating the result on each of the two dice.
 - [(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)] (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (4,1) (4,2) (4,3) (4,4) (4,5) (4,6) (5,1) (5,2) (5,3) (5,4) (5,5) (5,6) (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)
 - Each of the above sample points are equally likely, and each therefore has a probability of 1/36.
 - c. The probability of each event below can be obtained by counting the number of sample points which belong to the event and multiplying this amount by 1/36. This results in the following:

$$P(A) = \frac{1}{36}$$
 $P(B) = \frac{18}{36}$ $P(C) = \frac{6}{36}$ $P(C) = \frac{6}{36}$

S:
$$\begin{bmatrix} (B_1, B_2), (B_1, R_1), (B_1, R_2), (B_1, R_3), (B_2, R_1) \\ (B_2, R_2), (B_2, R_3), (R_1, R_2), (R_1, R_3), (R_2, R_3) \end{bmatrix}$$

Notice that order is ignored, as the only concern is whether or not a marble is selected.

 Each of these ten would be equally likely, implying that each occurs with a probability 1/10.

c.
$$P(A) = \frac{1}{10}$$
 $P(B) = 6\left(\frac{1}{10}\right) = \frac{6}{10} = \frac{3}{5}$ $P(C) = 3\left(\frac{1}{10}\right) = \frac{3}{10}$

A: {HHH, HHT, HTH, THH, TTH, THT, HTT}

B: {HHH, TTH, THT, HTT}

 $A \cup B$: {HHH, HHT, HTH, THH, TTH, THT, HTT}

 A^{c} : $\{TTT\}$

 $A \cap B$: {HHH, TTH, THT, HTT}

b. If the coin is fair, then each of the 8 possible outcomes are equally likely, with probability 1/8.

$$P(A) = \frac{7}{8}$$
 $P(B) = \frac{4}{8} = \frac{1}{2}$ $P(A \cup B) = \frac{7}{8}$ $P(A \cap B) = \frac{4}{8} = \frac{1}{2}$

c.
$$P(A \cup B) = P(A) + P(B) - P(A \cap B) = \frac{7}{8} + \frac{1}{2} - \frac{1}{2} = \frac{7}{8}$$

d. No.
$$P(A \cap B) = \frac{1}{2}$$
 which is not 0.

a.
$$P(A) = .50 + .10 + .05 = .65$$

b.
$$P(B) = .10 + .07 + .50 + .05 = .72$$

c.
$$P(C) = .25$$

d.
$$P(D) = .05 + .03 = .08$$
.

e.
$$P(A^{c}) = .25 + .07 + .03 = .35$$
 (Note: $P(A^{c}) = 1 - P(A) = 1 - .65 = .35$)

f.
$$P(A \cup B) = P(B) = .10 + .07 + .50 + .05 = .72$$

g.
$$P(A \cap B) = P(A) = .50 + .10 + .05 = .65$$

h. Two events are mutually exclusive if they have no sample points in common or if the probability of their intersection is 0.

$$P(A \cap B) = .50 + .10 + .05 = .65$$
. Since this is not 0, A and B are not mutually exclusive.

(3,45) (continued)

 $P(A \cap C) = 0$. Since this is 0, A and C are mutually exclusive.

 $P(A \cap D) = .05$. Since this is not 0, A and D are not mutually exclusive.

 $P(B \cap C) = 0$. Since this is 0, B and C are mutually exclusive.

 $P(B \cap D) = .05$. Since this is not 0, B and D are not mutually exclusive.

 $P(C \cap D) = 0$. Since this is 0, C and D are mutually exclusive.

3.46) Define the following events:

 E_1 : {3 heads}

 E_2 : {2 heads}

 E_3 : {1 heads}

 E_4 : {0 heads}

a.
$$A = E_1 \cup E_2 \cup E_3$$

$$P(A) = P(E_1) + P(E_2) + P(E_3) = \frac{1}{8} + \frac{3}{8} + \frac{3}{8} = \frac{7}{8}$$

b.
$$A = E_4^c$$
 $P(A) = 1 - P(E_4) = 1 - \frac{1}{8} = \frac{7}{8}$

- a. The event $A \cap B$ is the event the outcome is black and odd. The event is $A \cap B$: {11, 13, 15, 17, 29, 31, 33, 35}
- b. The event $A \cup B$ is the event the outcome is black or odd or both. The event $A \cup B$ is $\{2, 4, 6, 8, 10, 11, 13, 15, 17, 20, 22, 24, 26, 28, 29, 31, 33, 35, 1, 3, 5, 7, 9, 19, 21, 23, 25, 27\}$
- c. Assuming all events are equally likely, each has a probability of 1/38.

$$P(A) = 18\left(\frac{1}{38}\right) = \frac{18}{38} = \frac{9}{19}$$

$$P(B) = 18\left(\frac{1}{38}\right) = \frac{18}{38} = \frac{9}{19}$$

$$P(A \cap B) = 8\left(\frac{1}{38}\right) = \frac{8}{38} = \frac{4}{19}$$

$$P(A \cup B) = 28 \left(\frac{1}{38}\right) = \frac{28}{38} = \frac{14}{19}$$

$$P(C) = 18\left(\frac{1}{38}\right) = \frac{18}{38} = \frac{9}{19}$$

(continued)

(3,49) (untinued)

d. The event $A \cap B \cap C$ is the event the outcome is odd and black and low. The event $A \cap B \cap C$ is $\{11, 13, 15, 17\}$.

e.
$$P(A \cup B) = P(A) + P(B) - P(A \cap B) = \frac{9}{19} + \frac{9}{19} - \frac{4}{19} = \frac{14}{19}$$

f.
$$P(A \cap B \cap C) = 4\left(\frac{1}{38}\right) = \frac{4}{38} = \frac{2}{19}$$

g. The event $A \cup B \cup C$ is the event the outcome is odd or black or low. The event $A \cup B \cup C$ is:

$$\{1, 2, 3, \dots, 29, 31, 33, 35\}$$

or

{All simple events except 00, 0, 30, 32, 34, 36}

h.
$$P(A \cup B \cup C) = 32 \left(\frac{1}{38}\right) = \frac{32}{38} = \frac{16}{19}$$

(3.51) a. The sample points for this experiment are:

(PTW-R, Jury), (PTW-R, Judge), (PTW-A/D, Jury), (PTW-A/D, Judge), (DTW-R, Jury), (DTW-R, Judge), (DTW-A/D, Jury), (DTW-A/D, Judge)

b.
$$P(A) = \frac{1,465}{2,143} = .684$$

c.
$$P(B) = \frac{265}{2,143} = .124$$

d. No. $P(A \cap B) = \frac{194}{2,143} = .091$. Since this is not 0, events A and B are not mutually exclusive.

e.
$$P(A^{c}) = 1 - P(A) = 1 - .684 = .316$$
.

f.
$$P(A \cup B) = P(A) + P(B) - P(A \cap B) = .684 + .124 - .091 = .717$$

g.
$$P(A \cap B) = \frac{194}{2,143} = .091$$

(3.64) a.
$$P(A \cap B) = P(A|B)P(B) = .6(.2) = .12$$

b.
$$P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{.12}{.4} = .3$$

$$P(A \cap B) = P(A \cap C) = P(B \cap C) = 0$$

a.
$$P(A \cup B) = P(A) + P(B) - P(A \cap B) = .30 + .55 - 0 = .85$$

b.
$$P(A \cap B) = 0$$

c.
$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{0}{.55} = 0$$

d.
$$P(B \cup C) = P(B) + P(C) - P(B \cap C) = .55 + .15 - 0 = .70$$

e. No, B and C are not independent events. If B and C are independent events, then P(B|C) = P(B). From the problem, we know P(B) = .55.

$$P(B \mid C) = \frac{P(B \cap C)}{P(C)} = \frac{0}{.15} = 0$$
. Thus, since $P(B \mid C) \neq P(B)$, events B and C are not independent.

$$B: \{(3,6), (4,5), (5,4), (5,6), (6,3), (6,5), (6,6)\}$$

$$A \cap B$$
: {(3, 6), (4, 5), (5, 4), (5, 6), (6, 3), (6, 5)}

If A and B are independent, then $P(A)P(B) = P(A \cap B)$.

$$P(A) = \frac{18}{36} = \frac{1}{2}$$
 $P(B) = \frac{7}{36}$ $P(A \cap B) = \frac{6}{36} = \frac{1}{6}$

$$P(A)P(B) = \frac{1}{2} \cdot \frac{7}{36} = \frac{7}{72} \neq \frac{1}{6} = P(A \cap B)$$
. Thus, A and B are not independent.

(3.7

Let W_1 and W_2 represent the two white chips, R_1 and R_2 represent the two red chips, and B_1 and B_2 represent the two blue chips. The sample space is:

$$egin{array}{lll} W_1W_2 & W_2R_1 & R_1B_1 \\ W_1R_1 & W_2R_2 & R_1B_2 \\ W_1R_2 & W_2\dot{B}_1 & R_2B_1 \\ W_1B_1 & W_2B_2 & R_2B_2 \\ W_1B_2 & R_1R_2 & B_1B_2 \end{array}$$

Assuming each event is equally likely, each event will have a probability of 1/15.

Then,
$$P(A) = P(W_1W_2) + P(R_1R_2) + P(B_1B_2) = 3\left(\frac{1}{15}\right) = \frac{3}{15} = \frac{1}{5}$$

$$P(B) = P(R_1R_2) = \frac{1}{15}$$

$$P(C) = P(W_1W_2) + P(W_1R_1) + P(W_1R_2) + P(W_1B_1) + P(W_1B_2) + P(W_2R_1)$$

$$+ P(W_2R_2) + P(W_2B_1) + P(W_2B_2) + P(R_1R_2) + P(R_1B_1) + P(R_1B_2)$$

$$+ P(R_2B_1) + P(R_2B_2)$$

$$= 14\left(\frac{1}{15}\right) = \frac{14}{15}$$

$$P(A \cap B) = P(R_1R_2) = \frac{1}{15}$$

$$P(A^{\circ}) = 1 - P(A) = 1 - \frac{1}{5} = \frac{4}{5}$$

$$P(A^{c} \cap B) = 0$$

$$P(B \cap C) = P(R_1R_2) = \frac{1}{15}$$

$$P(A \cap C) = P(W_1W_2) + P(R_1R_2) = 2\left(\frac{1}{15}\right) = \frac{2}{15}$$

$$P(A^{c} \cap C) = P(W_{1}R_{1}) + P(W_{1}R_{2}) + P(W_{1}B_{1}) + P(W_{1}B_{2}) + P(W_{2}R_{1})$$

$$+ P(W_{2}R_{2}) + P(W_{2}B_{1}) + P(W_{2}B_{2}) + P(R_{1}B_{1}) + P(R_{1}B_{2})$$

$$+ P(R_{2}B_{1}) + P(R_{2}B_{2})$$

$$= 12\left(\frac{1}{15}\right) = \frac{12}{15} = \frac{4}{5}$$

$$P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{\frac{1}{15}}{\frac{1}{5}} = \frac{1}{3}$$

$$P(B|A^{c}) = \frac{P(A^{c} \cap B)}{P(A^{c})} = \frac{0}{\frac{4}{5}} = 0$$

$$P(B \mid C) = \frac{P(B \cap C)}{P(C)} = \frac{\frac{1}{15}}{\frac{14}{15}} = \frac{1}{14}$$

$$P(A \mid C) = \frac{P(A \cap C)}{P(C)} = \frac{\frac{2}{15}}{\frac{14}{15}} = \frac{1}{7}$$

$$P(C|A^{c}) = \frac{P(A^{c} \cap C)}{P(A^{c})} = \frac{\frac{4}{5}}{\frac{4}{5}} = 1$$

- 3.72 Define the following events:
 - A: {Child has neuroblastoma}
 - B: {Child undergoes surgery}
 - C: {Surgery is successful in curing the disease}

From the problem, we know $P(B \mid A) = .20$ and $P(C \mid B \cap A) = .95$.

We also know that $P(B \mid A) = \frac{P(B \cap A)}{P(A)}$ and $P(C \mid B \cap A) = \frac{P(C \cap B \cap A)}{P(B \cap A)}$

Thus, $P(C \cap B \mid A) = \frac{P(C \cap B \cap A)}{P(A)} = \frac{P(C \cap B \cap A)}{P(B \cap A)} \frac{P(B \cap A)}{P(A)} = P(C \mid B \cap A)P(B \mid A)$ = .95(.20) = .19

(3.73) Let $A = \{\text{Executive cheated at golf}\}\$ and $B = \{\text{Executive lied in business}\}\$. From the problem, P(A) = .55 and $P(A \cap B) = .20$.

 $P(B \mid A) = P(A \cap B) / P(A) = .20 / .55 = .364$

(3.77) Define the following events:

A: {Winner is from National League}

B: {Winner is from American League}

C: {Winner is from Eastern Division}

D: {Winner is from Central Division}

E: {Winner is from Western Division}

- a. $P(C|B) = \frac{P(C \cap B)}{P(B)} = \frac{6/13}{8/13} = \frac{6}{8} = .75$
- b. $P(A \mid D) = \frac{P(A \cap D)}{P(D)} = \frac{1/13}{2/13} = \frac{1}{2} = .5$
- c. $P(C^c \mid A) = \frac{P(C^c \cap A)}{P(A)} = \frac{2/13}{5/13} = \frac{2}{5} = .4$