STAT 213, Section 05

Solutions to Assignment No. 1

The median is the middle number once the data have been arranged in order. If n is even, there is not a single middle number. Thus, to compute the median, we take the average of the middle two numbers. If n is odd, there is a single middle number. The median is this middle number.

A data set with 5 measurements arranged in order is 1, 3, 5, 6, 8. The median is the middle number, which is 5.

A data set with 6 measurements arranged in order is 1, 3, 5, 5, 6, 8. The median is the average of the middle two numbers which is $\frac{5+5}{2} = \frac{10}{2} = 5$.

2.56 a.
$$\overline{x} = \frac{\sum x}{n} = \frac{7 + \dots + 4}{6} = \frac{15}{6} = 2.5$$

Median = $\frac{3+3}{2}$ = 3 (mean of 3rd and 4th numbers, after ordering)

b.
$$\overline{x} = \frac{\sum x}{n} = \frac{2 + \dots + 4}{13} = \frac{40}{13} = 3.08$$

Median = 3 (7th number, after ordering)

c.
$$\overline{x} = \frac{\sum x}{n} = \frac{51 + \dots + 37}{10} = \frac{496}{10} = 49.6$$

Median = $\frac{48+50}{2}$ = 49 (mean of 5th and 6th numbers, after ordering)

Mode = 50

a. The mean number of ant species discovered is:

$$\overline{x} = \frac{\sum x}{n} = \frac{3+3+...+4}{11} = \frac{141}{11} = 12.82$$

The median is the middle number once the data have been arranged in order: 3, 3, 4, 4, 4, 5, 5, 5, 7, 49, 52.

The median is 5.

The mode is the value with the highest frequency. Since both 4 and 5 occur 3 times, both 4 and 5 are modes.

- b. For this case, we would recommend that the median is a better measure of central tendency than the mean. There are 2 very large numbers compared to the rest. The mean is greatly affected by these 2 numbers, while the median is not.
- c. The mean total plant cover percentage for the Dry Steppe region is:

$$\overline{x} = \frac{\sum x}{n} = \frac{40 + 52 + \dots + 27}{5} = \frac{202}{5} = 40.4$$

The median is the middle number once the data have been arranged in order: 27, 40, 40, 43, 52.

The median is 40.

The mode is the value with the highest frequency. Since 40 occurs 2 times, 40 is the mode.

d. The mean total plant cover percentage for the Gobi Desert region is:

$$\overline{x} = \frac{\sum x}{n} = \frac{30 + 16 + \dots + 14}{6} = \frac{168}{6} = 28$$

The median is the mean of the middle 2 numbers once the data have been arranged in order: 14, 16, 22, 30, 30, 56.

The median is
$$\frac{22+30}{2} = \frac{52}{2} = 26$$
.

The mode is the value with the highest frequency. Since 30 occurs 2 times, 30 is the mode.

e. Yes, the total plant cover percentage distributions appear to be different for the 2 regions. The percentage of plant coverage in the Dry Steppe region is much greater than that in the Gobi Desert region.

a. The mean number of power plants is.

$$\overline{x} = \frac{\sum x}{n} = \frac{5+3+...+3}{20} = \frac{80}{20} = 4$$

The median is the mean of the middle 2 numbers once the data have been arranged in order: 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 5, 5, 5, 5, 6, 7, 9, 13

The median is $\frac{3+3}{2} = \frac{6}{2} = 3$.

There are 3 numbers that each occur 4 times. They are 1, 2, and 5. Thus, there are 3 modes, 1, 2, and 5.

b. Deleting the largest number, 13, the new mean is:

$$\overline{x} = \frac{\sum x}{n} = \frac{5+3+...+3}{19} = \frac{67}{19} = 3.526$$

The median is the middle number once the data have been arranged in order: 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 5, 5, 5, 5, 6, 7, 9

The median is 3.

There are 3 numbers that each occur 4 times. They are 1, 2, and 5. Thus, there are 3 modes, 1, 2, and 5.

By dropping the largest measurement from the data set, the mean drops from 4 to 3.526. The median and the modes stay the same. There is no effect on them.

c. Deleting the lowest 2 and highest 2 measurements leaves the following:

The new mean is:

$$\overline{x} = \frac{\sum x}{n} = \frac{1+1+\dots+7}{16} = \frac{56}{16} = 3.5$$

The trimmed mean has the advantage that some possible outliers have been eliminated.

a. Range =
$$4 - 0 = 4$$

$$s^{2} = \frac{\sum x^{2} - \frac{\left(\sum x\right)^{2}}{n}}{n-1} = \frac{22 - \frac{8^{2}}{5}}{4-1} = 2.3 \qquad s = \sqrt{2.3} = 1.52$$

b. Range =
$$6 - 0 = 6$$

$$s^{2} = \frac{\sum x^{2} - \frac{\left(\sum x\right)^{2}}{n}}{n-1} = \frac{63 - \frac{17^{2}}{7}}{7 - 1} = 3.619 \qquad s = \sqrt{3.619} = 1.90$$

c. Range =
$$8 - (-2) = 10$$

$$s^{2} = \frac{\sum x^{2} - \frac{\left(\sum x\right)^{2}}{n}}{n-1} = \frac{154 - \frac{30^{2}}{18}}{10 - 1} = 7.111 \qquad s = \sqrt{7.111} = 2.67$$

d. Range =
$$2 - (-3) = 5$$

$$s^{2} = \frac{\sum x^{2} - \frac{\left(\sum x\right)^{2}}{n}}{n-1} = \frac{29 - \frac{(-5)^{2}}{18}}{18 - 1} = 1.624 \qquad s = \sqrt{1.624} = 1.274$$

a.
$$\sum x = 3 + 1 + 10 + 10 + 4 = 28$$

a.
$$\sum x = 3 + 1 + 10 + 10 + 4 = 28$$
$$\sum x^2 = 3^2 + 1^2 + 10^2 + 10^2 + 4^2 = 226$$

$$\bar{x} = \frac{\sum x}{n} = \frac{28}{5} = 5.6$$

$$s^{2} = \frac{\sum x^{2} - \frac{\left(\sum x\right)^{2}}{n}}{n-1} = \frac{226 - \frac{28^{2}}{5}}{5-1} = \frac{69.2}{4} = 17.3 \qquad s = \sqrt{17.3} = 4.1593$$

b.
$$\sum x = 8 + 10 + 32 + 5 = 55$$
$$\sum x^2 = 8^2 + 10^2 + 32^2 + 5^2 = 1213$$

$$\sum x^2 = 8^2 + 10^2 + 32^2 + 5^2 = 1213$$

$$\bar{x} = \frac{\sum x}{n} = \frac{55}{4} = 13.75$$
 feet

$$s^{2} = \frac{\sum x^{2} - \frac{\left(\sum x^{2}\right)^{2}}{n}}{\frac{n-1}{1}} = \frac{1213 - \frac{55^{2}}{4}}{4 - 1} = \frac{456.75}{3} = 152.25 \text{ square feet}$$

$$s = \sqrt{152.25} = 12.339 \text{ feet}$$

c.
$$\sum x = -1 + (-4) + (-3) + 1 + (-4) + (-4) = -15$$

$$\sum x^2 = (-1)^2 + (-4)^2 + (-3)^2 + 1^2 + (-4)^2 + (-4)^2 = 59$$

$$\bar{x} = \frac{\sum x}{n} = \frac{-15}{6} = -2.5$$

$$s^{2} = \frac{\sum x^{2} - \frac{\left(\sum x\right)^{2}}{n}}{n-1} = \frac{59 - \frac{(-15)^{2}}{6}}{6 - 1} = \frac{21.5}{5} = 4.3$$

$$s = \sqrt{4.3} = 2.0736$$

(continued)

(2.80) (continued)

d.
$$\sum x = \frac{1}{5} + \frac{1}{5} + \frac{1}{5} + \frac{2}{5} + \frac{1}{5} + \frac{4}{5} = \frac{10}{5} = 2$$

$$\sum x^2 = \left(\frac{1}{5}\right)^2 + \left(\frac{1}{5}\right)^2 + \left(\frac{1}{5}\right)^2 + \left(\frac{2}{5}\right)^2 + \left(\frac{1}{5}\right)^2 + \left(\frac{4}{5}\right)^2 = \frac{24}{25} = .96$$

$$\overline{x} = \frac{\sum x}{n} = \frac{2}{6} = \frac{1}{3} = .33 \text{ ounce}$$

$$s^2 = \frac{\sum x^2 - \frac{\left(\sum x\right)^2}{n}}{\frac{n-1}{n}} = \frac{\frac{24}{25} - \frac{2^2}{6}}{6-1} = \frac{.2933}{5} = .0587 \text{ square ounce}$$

$$s = \sqrt{.0587} = .2422 \text{ ounce}$$

(2.126) For Sample A, the 21 ordered observations are:

85, 100, 121, 142, 145, 157, 158, 159, 161, 163, 165, 166, 170, 171, 171, 172, 172, 173, 184, 187, 196

(continued)

So the boxplot for Sample A is:

(b) Refining an "outlier" as any observation more
than 1.5 IQR further beyond Q1 on Q3, the outlier
in Sample A are 85, 100, 121, 196.

(The text may use a different definition of outless!

Additional statistics for Sample A:

(10) 21 = 2.1 73, so 10th percentile is 121 (40) 21 = 8.4 19, so 40th " is 161 .90 (21) = 18.91 19, so 90th " is 184.

el also obtained (insing a program, mot a hard calculation that, for . Sample A, X = 158.0, 5 = 27.11, (el did not have time to do any calculation for 5 ample B).

(2,130 (c) The ordered observations are:

2.25, 2.55, 2.73, 2.73, 2.95, 3.06, 3.13, 3.21 3.23, 3.27, 3.30, 3.32, 3.37, 3.38, 3.60, 3.75 3.81, 3.85, 3.88, 3.90, 4.05, 4.06, 4.09, 4.09 4.56, 5.06

26(4)= 6.517, m 9,= 3,13

26(=)=13, no mod= (3.37+3.38)/2=3,375

 $26\left(\frac{3}{4}\right) = 19.5120, \quad 5003 = 3.90,$

IQR = Q3-Q1=3,90-3,13=0,77

93+1.5 IQR = 3.90+1.155 = 5.055

9,-1.5 IQR= 3,13-1,155=1,975

(continued)

$$(2.130)$$
 (continued)
 $\overline{X} = \frac{2}{26} = 3.507$ $S = 0.634$