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- e a.  Plx=2)=P(x<2)-P(x<1)=.167 - .046 = .121 (from Table II, Appendix A) -
b. Px<5)=.034 S
c. Px>1)=1-Px<l)=1-.919=081 B




The simple events listed below are all equally likely, implying a probability of 1/32 for
each. The list is in a regular pattern such that the first simple event would yield x = 0,
the next five yield x = 1, the next ten yield x = 2, the next ten also yield x = 3, the next
five yield x = 4, and the final one yields x = 5. The resulting probability distribution is
given below the simple events.
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¢. FromTablell,n=35,p=.5:
P(x=0)=.031

B P(x=1)=.188-.031=.157 e
P(x=2)=.500-.188 = .312

- P(x=3)=.812-.500= 312 I
B P(x=4)=.969 — 812=.157

Px=15)=1-.969 = 031
a.  We will check the characteristics of a binomial random variable: -

1. This experiment consists of #» = 5 identical trials.

2. There are only 2 possible outcomes for each trial. A brand of bottled water can use
tap water (S) or not (F). T —

3. The probability of S remains the same from trial to trial. In this case, p = P(S) ~ .25

e for each trial. o
e 4. The trials are independent. Since there are a finite number of brands of bottled water, ——
the trials are not exactly independent. However, since the number of brands of
N bottled water is large compared to the sample size of 5, the trials are close enough to R

being independent.
5. x=number of brands of bottled water using tap water in 5 trials.

b.  The formula for finding the binomial probabilities is:
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o @ Let x = number of births in 1,000 that take place by Caesarian scetion. e
E(x) = np = 1000(.29) = 290.

o= Jnpg =1000(.29)(.71) =14.3492 = 13.0996 : o

T a.  From the problem, x is a binomial random variable with n =3 and p = .6. T

3) 0 430_ 3 0,3
=0)=7].6"4= 2 "4 = 064.
Pe=0) (Oj 6 ot

e b. Px=1)=1-Px=0)=1-.064 =.936.
c. u=Ex)=np=3(6)=18

o= \npg = \3(6)(4) = .8485

In samples of 3 parents, on the average, 1.8 condone spanking.

- Letn=20, p= .5, and x = number of correct questions in 20 trials. Then x has a binomial
S distribution. We want to find % such that: e

Px>k)<.05
orl —Px<k-1)<.05=>P(x<k-1)>.95
= k-1=14=k=15 R
(from Table II, Appendix A)

Note:  P(x>14)=1-P(x<13)=1—.942 = 058
P(x>15)=1-P(x<14)=1-.979 = 021 e

Thus, to have the probability less than .05, the lowest passing grade should be 15.

- Let x = Number of boys in 24 children. Then x is a binomial random variable with 5 = 24
and p=.5.

e H=E()=np=24(5)=12

SRR 0—:@ = 24(.5)(.5) =+/6 = 2.4495

A value of 21 boys out of 24 children would have a z-score of z= il;;i =3.67. A value
that is 3.67 standard deviations above the mean would be highly unh:kely. Thus, we would
agree with the statement, “Rodgers men produce boys.”



480) a.

U b.

C.

For A =1, from Table 11, Appendix A.

p(0)=P(x<0)=.368

p(D)=P(x<1) - P(x<0)=.736 — .368 = .368
p(2)=P(x<2)—P(x<1)=.920-.736=.184
pB3)=P(x<3)—P(x<2)=.981-.920=.061
p(4)=P(x <4)— P(x <3)=.996 - .981 = .015
p(5) =P(x<5)— P(x<4)=.999 —.996 = .003
p(6) = P(x < 6) — P(x < 5)=1.000 —.999 = .001
p(7)=Px<7)—P(x<6)=1.000-1.000=0
p(8) =P(x<8)— P(x<7)=1.000-1.000=0
p(9) =P(x<9)— P(x <8 =1.000-1.000=0
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P(=1 <x <3) = p(0) + p(1) + p(2) + p(3) = 368 + 368 + .184 = 920

p(0) = P(x < 0) = 277

p()=Px<s1)-Pkx=< 0) = .642 — 277 =365
p2)=P(x<2)- P(x<1)=.873—.642= 231
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Note that these probabilities are very close.

@ From Table II, Appendix A, with =25 and p = .05,




4.84Y) Letx=rnumber of extrasolar planet transits for 10,000 stars. Thenx has a Poisson
R distribution with 2= 5.6.

P(x>10)=1-P(x<10)=1-972=.028 e

e a P(x < 3)=.010 using Table II1, Appendix A with 4= 10.

T b.  Yes. The probability of observing 3 or fewer crimes in a year if the mean is still 10 is

extremely small. This is evidence that the Crime Watch group has been effective in this
T neighborhood. ‘

Let x = number of defective items in a sample of size 4. For this problem, x is a

hypergeometric random variable with N= 10, n = i
_ =10, n=4,and r=1.
if you observe no defectives. ' Youwillsccept the Lo
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{4.106) Let x = number of British bird species sampled that inhabit a butterfly hotspot in 4 trials.
Because the sampling is done without replacement, x is a hypergeometric random variable
with N=10,n=4,and r=7.
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P(x > 1) = 1 because the only values x can take on are 1, 2, 3, or 4.




Let x = number of times the vehicle is used in a day. Then x has a Poisson dis}ribution with

A=13.

a. P(x=2)=P(x<2)-Px<1)=.857 - .627 = .230 (from Table III, Appendix A)
b. Px>2)=1-P(x<2)=1-.857=.143

c. P(x=3)=P(x<3)-P(x<2)=.957—.857=.100

Let x = number of trees infected with the Dutch elm disease in the two trees purchased.

For this problem, x is a hypergeometric random variable with N= 10, n =2, and r=3, =~ -

The probability that both trees will be healthy is:
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The probability that at least one tree will be infected is:

Px>1)=1-Px=0)=1-.467 = 533.

4.128) Let x = number of defective CD mini-rack systems in 5 trials. Since the selection is done

without replacement, x is a hypergeometric random variable with N = 10,n=5,and r=3,

a.

The probability that the shipment will be rejected is the same as the probability that at
least one defective CD mini-rack system is selected:
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If 6 CD mini-rack systems are selected, the shipment will be accepted if none of the
systems are defective:
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N 10 1o 210
n 6 614!




