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STAT 213 LOS ——-Midterm Exam —- Oct. 29, 2009 — Time: 60 min.
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('i 0 1. The number of workers on an assembly line varies due to the level of absenteeism on
any given day. In a random sample of production output from several days of work, the
following data were obtained, where £ = number of workers absent from the assembly line
and y = number of defects coming off the line.
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@d, ind the equation of the least-squares line, with = as the independent variable and y

T the dependent voriable.
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@b) Calcnlate the correlation coefficient r.
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U (‘D 2. Urn I contains two red balls and three green balls. Urn II contains one red ball and
one green ball. A fair die is rolled once. If a 1 or a 2 comes up, then a ball is selected at
random from Urn I. Otherwise (if a 3, 4, 5 or 6 comes up) a ball is selected at random from

Urn II.
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_7 (b) the conditional probability that the ball was drawn from Urn II, given that the
selected ball was green.
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(ffD 3. A fair coin is tossed four times. Let A be the event that the mumber of heads that are
obtained exceeds the number of fails that are obtained. Let B be the event that the first
two of the four tosses result in heads.

Find:
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@f_c) P(A|B).
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‘“\O’} 4. Sixty percent of the residents in a large city are registered to vote. If 20 residents are
selected at random, find:

@ (a) the probability that ex:actly 14 Wﬂ}ée registered to vote;
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@b) the probability that at least 11 will be registered to vote.
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(¢} Let X denote the total number of people, out of the 20 selected, who are registered
o vote. Find the mean and variance of X.
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(N}) 5. A random variable X has the following probability distribution:

z | PIX =z}
0 0.4
1 0.1
2 0.3
3 0.2

5(&) Compute P{{X — 1.5)% > 2}.
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5(13) Compute the expected value and standard deviation of X.
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