

FACULTY OF SCIENCE Department of Mathematics and Statistics

Statistics 323 (3-1T)

Introduction to Mathematical Statistics

(see Course Descriptions under the year applicable: http://www.ucalgary.ca/pubs/calendar/)

Syllabus

<u>Topics</u>	Number of hours
Introduction to parameter estimation using an estimator/statistic: Properties of estimators/statistics, including unbiasedness, bias, and the mean square error of a statistic.	4
Confidence interval estimation: Pivotal quantities. Large sample confidence interval estimation of the population mean and proportion. Confidence interval estimation of the population variance, ratio of population variances, difference between population means, population proportions.	6
Functions of random variables: Change of variable and method of moment generating functions. Coverage to include both univariate and bivariate cases. Order statistics and their applicability to parameter estimation.	6
Distributions of Statistics: revisit the Central Limit Theorem. The derivation of the chi-square, t, and F distribution. Derivation of the distribution of the sample variance.	4
Efficacy of estimators/statistics: the relative efficiency, consistency. Methods of obtaining estimators/statistics including the method of moments and maximum likelihood estimation.	4
Hypothesis Testing: Developing formal hypothesis tests using discrete and continuous distribution theory. Type I and Type II errors. P-values. Applications to both single parameter and bi-parameter cases. Uniformly most powerful tests and the Neyman Pearson Lemma.	6
Simple Linear Regression Analysis: correlation, least-squares estimation, inference for estimated coefficients, coefficient of variation and analysis of variance. Derivation of the F-test. Model assessment and prediction of the response variable. Bivariate Normal Distribution.	6
TOTAL HOURS	36

* * * * * *

Date: September 5, 2013 Creator: Jim Stallard