STAT 407

Solutions to problems in Chapter 5

E[Time] = E[T₁ + T₂ + T₃] where T_i is the time between the (i-1) and the ith departure. Now T₁ and T₂ are exponential with rate 21 since they are both the minimum of two exponentials each of which has rate 1. Also, T₃ is exponential with rate 1. Thus,

$$E[T] = E[T_1] + E[T_2] + E[T_3]$$

= 1/(21) + 1/(21) + 1/1 = 2/1.

Using the same representation as in the solution to Problem 15 we have that

$$\mathbb{E}[\mathbb{T}] = \mathbb{E}[\mathbb{T}_1] + \mathbb{E}[\mathbb{T}_2] + \mathbb{E}[\mathbb{T}_3]$$

The random variables T_1 and T_2 are both exponential with rate $\lambda_1 + \lambda_2$, and so have mean $1/(\lambda_1 + \lambda_2)$. To determine $E[T_3]$ consider the time at which the first customer has departed and condition on which server completes the next service. This gives

$$E[T_3] = E[T_3|server 1] [\lambda_1/(\lambda_1 + \lambda_2)]$$

+
$$E[T_3|server 2][\lambda_2/(\lambda_1 + \lambda_2)]$$

$$= (1/\lambda_2)[\lambda_1/(\lambda_1 + \lambda_2)] + (1/\lambda_1)[\lambda_2/(\lambda_1 + \lambda_2)].$$

Therefore,

$$E[Time] = 2/(\lambda_1 + \lambda_2) + (1/\lambda_2)[\lambda_1/(\lambda_1 + \lambda_2)] + (1/\lambda_1)[\lambda_2/(\lambda_1' + \lambda_2)].$$

21

E[time] =

E[time waiting at 1] + $1/\mu_1$ + E[time waiting at 2] + $1/\mu_2$. Now

 $E[\text{time waiting at 1}] = 1/\mu_1,$ $E[\text{time waiting at 2}] = (1/\mu_2) \frac{\mu_1}{\mu_1 + \mu_2}.$

The last equation follows by conditioning on whether or not the customer waits for server 2. Therefore,

$$E[time] = 2/\mu_1 + (1/\mu_2)[1 + \mu_1/(\mu_1 + \mu_2)]$$

22

 $E[time] = E[time waiting for server 1] + 1/<math>\mu_1$

• E[time waiting for server 2] + $1/\mu_2$.

Now, the time spent waiting for server 1 is the remaining service time of the customer with server 1 plus any additional time due to that customer blocking your entrance. If server 1 finishes before server 2 this additional time will equal the additional service time of the customer with server 2. Therefore,

E[time waiting for server 1] = $1/\mu_1$ + E[Additional] = $1/\mu_1$ + $(1/\mu_2)[\mu_1/(\mu_1 + \mu_2)]$.

Since when you enter service with server 1 the customer preceding you will be entering service with server 2, it follows that you will have to wait for server 2 if you finish service first.

Therefore, conditioning on whether or not you finish first

E[time vaiting for server 2] = $(1/\mu_2)[\mu_1/(\mu_1 + \mu_2)]$.

$$E[time] = 2/\mu_1 + (2/\mu_2)[\mu_1/(\mu_1 + \mu_2)] + 1/\mu_2$$
.

- (a) 1/2.
- (b) (1/2)ⁿ⁻¹: whenever battery 1 is in use and a failure occurs the probability is 1/2 that it is not battery 1 that has failed.
- (c) $(1/2)^{n-i+1}$, i > 1.
- (d) T is the sum of n-1 independent exponentials with rate 2μ (since each time a failure occurs the time until the next failure is exponential with rate 2μ).
- (e) Gamma with parameters n-1 and 2μ.

25

(a)
$$\frac{1}{\mu_1 + \mu_2 + \mu_3} + \sum_{i=1}^{3} \frac{\mu_i}{\mu_1 + \mu_2 + \mu_3} \frac{1}{\mu_i} = \frac{4}{\mu_1 + \mu_{12} + \mu_{13}}$$
(b)
$$\frac{1}{\mu_1 + \mu_2 + \mu_3} + (a) = \frac{5}{\mu_1 + \mu_2 + \mu_3}$$

26

(a)
$$\frac{\mu_1}{\mu_1 + \mu_3}$$
(b)
$$\frac{\mu_1}{\mu_1 + \mu_3} \frac{\mu_2}{\mu_2 + \mu_3}$$
(c)
$$\sum_{i} \frac{1}{\mu_i} + \frac{\mu_1}{\mu_1 + \mu_3} \frac{\mu_2}{\mu_2 + \mu_3} \frac{1}{\mu_3}$$

27

$$\sum_{i} \frac{1}{\mu_{i}} + \frac{\mu_{1}}{\mu_{1} + \mu_{2}} \left[\frac{1}{\mu_{2}} + \frac{\mu_{2}}{\mu_{2} + \mu_{3}} \frac{1}{\mu_{3}} \right] + \frac{\mu_{2}}{\mu_{1} + \mu_{2}} \frac{\mu_{1}}{\mu_{1} + \mu_{3}} \frac{\mu_{2}}{\mu_{2} + \mu_{3}} \frac{1}{\mu_{3}}$$

(b)
$$\frac{\lambda + \mu_A}{\lambda + \mu_B} = \frac{\lambda}{\lambda + \mu_B}$$

(30) Condition on which animal died to obtain

$$E[\text{additional life}] = E[\text{additional life} - \text{dog died}] \frac{\lambda_d}{\lambda_c + \lambda_d} + E[\text{additional life} - \text{cat died}] \frac{\lambda_c}{\lambda_c + \lambda_d}$$

$$= \frac{1}{\lambda_c} \frac{\lambda_d}{\lambda_c + \lambda_d} + \frac{1}{\lambda_d} \frac{\lambda_c}{\lambda_c + \lambda_d}$$

Condition on whether the 1 PM appointment is still with the doctor at 1:30, and use the fact that if she or he is then the remaining time spent is exponential with mean 30. This gives

$$E[\text{time spent in office}] = 30(1 - e^{-30/30}) + (30 + 30)e^{-30/30}$$

= 30 + 30e⁻¹

- For s = 2/60, 5/60, 10/60, 20/60 minutes, we see that $e^{-3s} = e^{-1/10}$, $e^{-1/4}$, $e^{-1/2}$, e^{-1} .
- (38) e^{-3s} + 3se^{-3s}.
- (42) a) $E[S_4] = 4/\lambda$.
 - (b) $E[S_4|N(1) = 2] = 1 + E[time for 2 more events] = 1 + 2/\lambda$.
 - (c) E[N(4) N(2)|N(1) = 3] = E[N(4) N(2)]

The first equality used the independent increments property.

Let S_i denote the service time at server i, i = 1, 2, and let X denote the time until the next arrival. Then, with p denoting the proportion of customers that are served by both servers, we have

$$p = P\{X > S_1 + S_2\} = P\{X > S_1\}P\{X > S_1 + S_2|X > S_1\} = \frac{\mu_1}{\mu_1 + \lambda} \frac{\mu_2}{\mu_2 + \lambda}$$

48

Given T, the time until the next arrival. N, the number of busy servers found by the next arrival, is a binomial random variable with parameters n and $p = e^{-\mu T}$. (a)

$$E[N] = \int E[N|T=t] \lambda e^{-\lambda t} dt = \int n e^{-\mu t} \lambda e^{-\lambda t} dt = \frac{n\lambda}{\lambda + \mu}$$

For (b) and (c), you can either condition on T, or use the approach of part (a) of Exercise 14 to obtain

$$P\{N=0\} = \prod_{j=1}^{n} \frac{(n-j+1)\mu}{\lambda + (n-j+1)\mu}$$

$$P\{N=n-i\} = \frac{\lambda}{\lambda + (n-i)\mu} \prod_{j=1}^{i} \frac{(n-j+1)\mu}{\lambda + (n-j+1)\mu}$$

Let T denote the time until the next train arrives; and so T is uniform on (0, 1). Note that, conditional on T, X is Poisson with mean 77.

- (a) E[X] = E[E[X|T]] = E[TT] = 7/2.
- (b) E[X|T] = TT, Var(X|T) = TT. By the conditional variance formula

$$Var(X) = 7E[T] + 49Var(T) = 7/2 + 49/12 = 91/12.$$

The unconditional probability that the claim is type 1 is 10/11. Therefore

$$P(1|4000) = \frac{P(4000|1)P(1)}{P(4000|1)P(1) + P(4000|2)P(2)} = \frac{e^{-4}10/11}{e^{-4}10/11 + .2e^{-.8}1/11}$$

- 61)
- (a) Poisson with mean cG(t).
- (b) Poisson with mean c[1-G(t)].
- (c) Independent.
- 63 Let X and Y be respectively the number of customers in the system at time t+s that were present at time s, and the number in the system at t+s that were not in the system at time s. Since there are an infinite number of servers, it follows that X and Y

are independent (even if given the number in the system at time s). Since the service distribution is exponential with rate μ , it follows that given that X(s) = n, X will be Binomial with parameters n and $p = e^{-\mu t}$. Also Y, which is independent of X(s), will have the same distribution as X(t). Therefore, Y is Poisson with mean $\lambda \int_{0}^{t} e^{-\mu y} dy = \lambda(1 - e^{-\mu t})/\mu$.

(a)
$$E[X(t+s)|X(s) = n] = E[X|X(s) = n] + E[Y|X(s) = n].$$

= $ne^{-\mu t} + \lambda(1 - e^{-\mu t})/\mu$.

(b)
$$Var(X(t+s)|X(s) = n) = Var(X + Y|X(s) = n)$$

= $Var(X|X(s) = n) + Var(Y)$
= $ne^{-\mu t}(1-e^{-\mu t}) + \lambda(1-e^{-\mu t})/\mu$.

The above equation uses the formulas for the variances of a Binomial and a Poisson random variable.