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@ Let T be the time you spend in the system; let S; be
the service time of the i person in queue: let R be
the remaining service time of the person in service;
let 5 be your service time. Then,

E[T]=E[R + 53 + S2++ S3 + S4 + 5]
4

=E[R]+ Y E[S;]+E[S] =6/u
i=1

Where we have used the lack of memory property
to conclude that R is also exponential with rate p.
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Condition on which server initially finishes first. ;
Now,

P{Smith is last|server 1 finishes first}

= P{server 1 finishes before server 2} ’;
by lack of memory
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Similarly,

P

P{Smith is last{server 2 finished first} = 2|

At Ay

and thus
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9. ) Condition on whether machine 1 is still working
at time ¢, to obtain the answer,
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@(a) P{X; < X < X3}
= P{X]_ = min(XL X3, X3)}
P{X2 < X3|X1 = min(Xl, XZ: X3)}
Ay

o ———-—-————wP{Xz < X3|X1
A+ A2+ As
= min(Xl, X7, XB)}
Al Az
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where the final equality follows by the lack of
memory property.




{a) The conditional density of X gives that
X <cis

flx)y Ae~ M

X<e)= = , 0
f(x, C) P{x<c} T <x<c %

Hence,

c
E[X|X <] = fx)\e“"xdx/(l Y
0
Integration by parts yields that

c
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c
/x)ue"""xdxz —xe=A* ) +fe"‘xdx
0
0

=—ce M4 (1~ e MY /A
Hence,
EIXIX <] =1/A—ce /(1 — ™).
(b) 1/A =E[X|X < cJ(1~e )+ (c+1/A)e~

This simplifies to the same answer as given in
part (a).

@ Let T; denote the time between the (i — 1) and
the #* failure. Then the T; are independent with T;
being exponential with rate (101 ~ i) /200. Thus,
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E[T] =} E[T] =} -
=1 =1 101 ~i
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Var(T) = i; Var(T;} = ig{ 0=
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(©) E[T)=1/p +1/p2+Pa/tia+ Pali2

@ (a) 1/2.

(b) (1/2)""': whenever battery 1 is in use and a
failure occurs the probability is 1/2 that it is
not battery 1 that has failed.

(© (1/2)7#1 is1.
(d) T is the sum of n — 1 independent exponen-
tials with rate 2u (since each time a failure

occurs the time until the next failure is expo-
nential with rate 2p).

(e) Gamma with parameters # — 1 and 2.




@ Parts (a) and (b) follow upon integration. For part

” (¢), condition on which of X or Y is larger and use
the lack of memory property to conclude that the
amount by which it is larger is exponential rate A.
For instance, for x < {,

fx—y(x)dx
=P{X <YIP{-x<Y-X<-x+dx|]Y > X}
= -;—Ae)‘xdx

For (d) and {e), condition on 1.

Condition on which animal died to obtain
Eladditional life]

= E[additional life | dog died] |

+ Eladditional life | cat dled]
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(a) E[S,] = 4/A.
(b) E 5 iN(l) 2]
=1 + E[time for 2 more events] = 1+ 2/A.

(© E[N(4)—N(2)|N(1) = 3] = E[N(4) ~ N(2)]
=2A.

The first equality used the independent incre-
ments property.
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(b) Let W denote the waiting time and let X
denote the time until the first car. Then

E[W] = fo E[W|X = x]Ae™*dx
T
=f0 EWIX = x]?xe"’""xdx
+ fT E[W|X = x]Ae~Mdx

T
= fﬂ (x + E[WDAe Mdx 4 Te—AT
Hence,

T
EWl =T+ e"Tf xAe Mdx
0

Let T denote the time until the next train arrives;
and so T is uniform on (0, 1}. Note that, conditional

on T, X is Poisson with mean 77T.

(@) E[X)= E[E[X|T]] = El7T) = 7/2.

(b) E[X|T] = 7T, Var(X|T)=7T. By the condi-
tional variance formula
Var(X) = 7E[T] +49Var(T| = 7/2+ 49/12 =
91/12.

@ iI'his is_ the gambler's ruin probability that, start-
Ing with £, the gambler’s fortune reaches 2k

Eefc?re 0 when her probability of winning each
etis p=2A; /(M + A2). The desired probability is
1~ (Aa/2)*

L (Aa/Ar)%

@ (a) Itisabinomial (n, p) random variable.

(b} Itis geometric with parameter p.
(¢) Itisa negative binomial with parameters 7, p.
(d) LetQ < iy <ip,--+ <ir< n. Then,
P{eventsatiy, ..., ir|[N(n} =r}

Plevents atiy, ..., ir, N(n) =1}

P{N(n) =r}
Pr (1 — p)"—l‘
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The unconditional probability that the claim is
type 1is 10/11. Therefore,

P(4000[1)P(1)
(4000[1)P(1) + P(4000[2)P(2)
_ e~*10/11
T em%10/11 4 2¢781/11

P(1]4000) =

61./(a) Poisson with mean cG(t).
(b) Poisson with mean ¢{1 — G(¢)].
(c) Independent.

@ Let X and Y be respectively the number of cus-

tomers in the system at time { -~ 5 that were present
at time s, and the number in the system at £ -5
that were not in the system at time s. Since there
are an infinite number of servers, it follows that X .
and Y are independent (even if given the number
is the system at time s). Since the service distribu- |
tion is exponential with rate 1, it follows that given
that X(s) = n, X will be binomial with parame-
ters n and p = ¢~ ™. Also Y, which is independent
of X(s), will have the same distribution as X().

t
Therefore, Y is Poisson with mean A [ e Hdy
0
=A(l—e"*Y/p
(@) E[X(t+s)|X(s) =n]
= E[X|X(s} = n] + E[Y]X(s) = n].
=ne M L A(1—e M) /1.

(b) Var(X(t+s)|X(s) =n)
= Var(X + Y|X(s) = n)

= Var(X|X(s) = n) + Var(Y}

= ne M (1 — e M) + A(1 e~} /1.
The above equation uses the formulas for the
variances of a binomial and a Poisson random

¢ MM)
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(c) Consider an infinite server queuing system in
which customers arrive according to a Poisson
process with rate A, and where the service
times are all exponential random variables
with rate p. If there is currently a single cus-
tomer in the system, find the probability that

the system becomes empty when that cus-
tomer departs.

Condition on R, the remaining service time:
P{empty}

(e.9]
=/0 P{empty|R = t}pe Hidt
=) [
=./0 exp{wﬁfo e Midy} e M ds
= foo exp{—i(l — " ) Y e ML
0 1
= fl e~ By
0

= %(1 — MK

where the preceding used that P{empty|
R =1} is equal to the probability that an
M/M /oo queue is empty at time .

(7 e
| .(i) | No.

(ii) No.

(iii) P{Ty > t} = P{N{t) = 0} = e™"() where

m(t) = fo *Als)ds.

$ 40,000 and $1.6 x 10°.



86, (a) P{N(t) =n} = 3¢ 3(3)"nl + .7~ (5t)"n!.

(b) No!

(¢} Yes! The probability of n eventsin any interval
of length £ will, by conditioning on the type of
year, be as given in (a).

{d) No! Knowing how many storms occur in an
interval changes the probability that it is a
good year and this affects the probability dis-
tribution of the number of storms in other
intervals.

(&) P{good|N(1) = 3}

_ P{N{(1) = 3|good} P{good}
~ P{N(1) = 3jgood} P{good} + P{N(1)

e e e

= 3|bad}P{bad}
_ (e=33%/31).3
(e7333/31).3 + 5% /31).7
Con[X(1), X(t +5)) |

= Cov[X(t), X(#) + X(t +5) — X(1)]

= Cov[X(#), X(t)] + Cov{X(t), X(t +5) — X(8)]
= Cov[X(#), X(t)] by independent increments
= Var[X(t)] = ME[Y?).

Chepter €1

This is not a birth and death process since we need
more information than just the number working.
We also must know which machine is working. We
can analyze it by letting the states be j

b : both machines are working

1:1is working, 2 is down

2: 2 is working, 1 is down

01: both are down, 1 is being serviced

0s: both are down, 2 is being serviced.

Up= H1t 2, 1 =M TR 2= TR

et

vy, = Ug, = H

_ 2 _q_ _
Poi= mm =1 Ba P =i

=1-Pp,

Py p= #—_f_iﬂ =1-Pg, FPo,17=Fy,2=1



86,) (a) P{N(t) =n} = 3¢ 3(36)"n!+.7e7>(5¢)"n!.

(b) No!

(¢} Yes! The probability of n events in any interval
of length t will, by conditioning on the type of
year, be as given in (a).

(d} No! Knowing how many storms oceur in an
interval changes the probability that it is a
good year and this affects the probability dis-
tribution of the number of storms in other
intervals.

(e) P{good|N(1) = 3}

_ P{N(1) = 3|good} P{good}
~ P{N(1) = 3|good } P{good} + P{N(1)
= 3{bad}P{bad}

_ (e733%/31).3
 (e733%/31).3 +e755%/31).7

Cov[X (), X(t+5)]

= Cov[X(£), X(t) + X(t +5) — X(8)]

= Cow[X(t), X(1)] + Cov[X(t), X(t + 5} — X(1)]
= Cov[X(t), X(t)] by independent increments
= Var[X(t)] = AeE[Y?].

 Chapher- G

This is not a birth and death process since we need
more information than just the number working.
We also must know which machine is working. We
can analyze it by letting the states be

b : both machines are working

1:1is working, 2 is down

2:2is working, 1 is down

01: both are down, 1 is being serviced

02: both are down, 2 is being serviced.

Up= M1+, Uy = ML F U, U2 Hy K

Uy, = g, = K

M g _
Por= i =1 P2 Puo= i
=1-Pp,

P2,b= E__%::l_PZ,Ugr P01,1=P02,2m1'

;



(a) Yes.
(b) Itis a pure birth process.

(c) If there are i infected individuals then
since a contact will involve an infected and
an uninfected individual with probability
i(n—i)/(3), it follows that the birth rates are
Ai=Ai(n—d}/(%), i=1,...,n Hence,

E[time all infected) = ”—(’;T“Q Y 1/[i(n—i)].
=1

1 1
Starting with E[Ty] = 3o = 5 employ the identity
0
N Biprr
(%) = 5+ SE[7i

to successively compute E[T;] for7 == 1, 2,3, 4,

(@ E[To]+---+ E[Ts].
(b) E[T3) + E[T3] -+ E[Ty).



