STAT 407

Solutions to assignment #3

Chapter 6

(a) If the state is the number of individuals at time t, we get a birth and death process with

$$\lambda_n = n\lambda + \theta \qquad n < N$$

$$\lambda_n = n\lambda$$
 $n \ge N$

$$\mu_n = n\mu$$
.

(b) Let P_i be the long-run probability that the system is in state i. Since this is also the proportion of time the system is in state i, we are

looking for
$$\sum_{i=3}^{\infty} P_i$$
.

We have
$$\lambda_k P_k = \mu_{k+1} P_{k+1}$$
.

This yields

$$P_1 = \frac{\theta}{\mu} P_0$$

$$P_2 = \frac{\lambda + \theta}{2\mu} P_1 = \frac{\theta(\lambda + \theta)}{2\mu^2} P_0$$

$$P_3 = \frac{2\lambda + \theta}{2\mu} P_2 = \frac{\theta(\lambda + \theta)(2\lambda + \theta)}{6\mu^3} P_0.$$

For $k \ge 4$, we get

$$P_k = \frac{(k-1)\lambda}{k\mu} P_{k-1},$$

which implies

$$P_k = \frac{(k-1)(k-2)\cdots(3)}{(k)(k-1)\cdots(4)} \left[\frac{\lambda}{\mu}\right]^{k-3}$$

$$P_3 = \frac{3}{k} \left[\frac{\lambda}{\mu} \right]^{k-3} P_3;$$

therefore
$$\sum_{k=3}^{\infty} P_k = 3 \left[\frac{\mu}{\lambda} \right]^3 P_3 \sum_{k=3}^{\infty} \frac{1}{k} \left[\frac{\lambda}{\mu} \right]^k$$
,

(continued)

Ŧij.

11

126 (continued)

2

but
$$\sum_{k=1}^{\infty} \frac{1}{k} \left[\frac{\lambda}{\mu} \right]^k = \log \left[\frac{1}{1 - \frac{\lambda}{\mu}} \right]$$
$$= \log \left[\frac{\mu}{\mu - \lambda} \right] \text{ if } \frac{\lambda}{\mu} < 1.$$

So
$$\sum_{k=3}^{\infty} P_k = 3 \left[\frac{\mu}{\lambda} \right]^3 P_3 \left[\log \left[\frac{\mu}{\mu - \lambda} \right] - \frac{\lambda}{\mu} - \frac{1}{2} \left[\frac{\lambda}{\mu} \right]^2 \right]$$

$$\sum_{k=3}^{\infty} P_k = 3 \left[\frac{\mu}{\lambda} \right]^3 \left[\log \left[\frac{\mu}{\mu - \lambda} \right] - \frac{\lambda}{\mu} - \frac{1}{2} \left[\frac{\lambda}{\mu} \right]^2 \right]$$
$$\frac{\theta(\lambda + \theta)(2\lambda + \theta)}{6\mu^3} P_0.$$

Now $\sum_{i=0}^{\infty} P_i = 1$ implies

$$P_{0} = \left[1 + \frac{\theta}{\mu} + \frac{\theta(\lambda + \theta)}{2\mu^{2}} + \frac{1}{2\lambda^{3}}\theta(\lambda + \theta)(2\lambda + \theta)\right] \times \left[\log\left[\frac{\mu}{\mu - \lambda}\right] - \frac{\lambda}{\mu} - \frac{1}{2}\left[\frac{\lambda}{\mu}\right]^{2}\right]^{-1}.$$

And finally,

$$\sum_{k=3}^{\infty} P_k = \left[\left[\frac{1}{2\lambda^3} \right] \left[\log \left[\frac{\mu}{\mu - \lambda} \right] - \frac{\lambda}{\mu} - \frac{1}{2} \left[\frac{\lambda}{\mu} \right]^2 \right] \right]$$

$$\theta(\lambda + \theta)(2\lambda + \theta) / \left[1 + \frac{\theta}{\mu} + \frac{\theta(\lambda + \theta)}{2\mu^2} + \frac{\theta(\lambda + \theta)(2\lambda + \theta)}{2\lambda^3} \right]$$

$$\times \left[\log \left[\frac{\mu}{\mu - \lambda} \right] - \frac{\lambda}{\mu} - \frac{1}{2} \left[\frac{\lambda}{\mu} \right]^2 \right].$$

\sim			1	. af awat	omore in	the	shop	as	the
(13.)	With	the	numbei	or cusi	Omers		Jilop History		
	state,	we	get a bi	rth and	omers in death pro	cess	MILL		

$$\lambda_0 = \lambda_1 = 3 \quad \mu_1 = \mu_2 = 4.$$

Therefore

$$P_1 = \frac{3}{4}P_0$$
 $P_2 = \frac{3}{4}$ $P_1 = \left[\frac{3}{4}\right]^2 P_0$.

And since $\sum_{i=0}^{2} P_{i} = 1$, we get

$$P_0 = \left[1 + \frac{3}{4} + \left[\frac{3}{4}\right]^2\right]^{-1} = \frac{16}{37}.$$

(a) The average number of customers in the shop is

$$P_1 + 2P_2 = \left[\frac{3}{4} + 2\left[\frac{3}{4}\right]^2\right] P_0$$
$$= \frac{30}{16} \left[1 + \frac{3}{4} + \left[\frac{3}{4}\right]^2\right]^{-1} = \frac{30}{37}.$$

(b) The proportion of customers that enter the shop is

$$\frac{\lambda(1-P_2)}{\lambda}=1-P_2=1-\frac{9}{16}\cdot\frac{16}{37}=\frac{28}{37}.$$

(c) Now $\mu = 8$, and so

$$P_0 = \left[1 + \frac{3}{8} + \left[\frac{3}{8}\right]^2\right]^{-1} = \frac{64}{97}.$$

So the proportion of customers who now enter the shop is

$$1 - P_2 = 1 - \left[\frac{3}{8}\right]^2 \frac{264}{97} = 1 - \frac{9}{97} = \frac{88}{97}.$$

The rate of added customers is therefore

$$\lambda \left[\frac{88}{97} \right] - \lambda \left[\frac{28}{37} \right] = 3 \left[\frac{88}{97} - \frac{28}{37} \right] = 0.45.$$

The business he does would improve by 0.45 customers per hour.

14. Letting the number of cars in the station be the state, we have a birth and death process with

$$\lambda_0 = \lambda_1 = \lambda_2 = 20$$
, $\lambda_i = 0$, $i > 2$,

$$\mu_1 = \mu_2 = 12.$$

Hence.

$$P_{1} = \frac{5}{3}P_{0}, P_{2} = \frac{5}{3}P_{1} = \left[\frac{5}{3}\right]^{2}P_{0},$$

$$P_{3} = \frac{5}{3}P_{2} = \left[\frac{5}{3}\right]^{3}P_{0}$$

and as $\sum_{i=0}^{3} P_{i} = 1$, we have

$$P_0 = \left[1 + \frac{5}{3} + \left[\frac{5}{3}\right]^2 + \left[\frac{5}{3}\right]^2\right]^{-1} = \frac{27}{272}.$$

- (a) The fraction of the attendant's time spent servicing cars is equal to the fraction of time there are cars in the system and is therefore $1 P_0 = 245/272$.
- (b) The fraction of potential customers that are lost is equal to the fraction of customers that arrive when there are three cars in the station and is therefore

$$P_3 = \left[\frac{5}{3}\right]^3 P_0 = 125/272.$$

15. With the number of customers in the system as the state, we get a birth and death process with

$$\lambda_0 = \lambda_1 = \lambda_2 = 3 \ \lambda_i = 0, \quad i \ge 4,$$

 $\mu_1 = 2 \ \mu_2 = \mu_3 = 4.$

Therefore, the balance equations reduce to

$$P_1 = \frac{3}{2}P_0 P_2 = \frac{3}{4}P_1 = \frac{9}{8}P_0 P_3 = \frac{3}{4}P_2 = \frac{27}{32}P_0.$$

And therefore,

$$P_0 = \left[1 + \frac{3}{2} + \frac{9}{8} + \frac{27}{32}\right]^{-1} = \frac{32}{143}.$$

(a) The fraction of potential customers that enter the system is

$$\frac{\lambda(1-P_3)}{\lambda} = 1 - P_3 = 1 - \frac{27}{32} \times \frac{32}{143} = \frac{116}{143}.$$

(b) With a server working twice as fast we would get

$$P_1 = \frac{3}{4}P_0 \ P_2 = \frac{3}{4}P_1 = \left[\frac{3}{4}\right]^2 P_0 \ P_3 = \left[\frac{3}{4}\right]^3 P_0,$$
and
$$P_0 = \left[1 + \frac{3}{4} + \left[\frac{3}{4}\right]^2 + \left[\frac{3}{4}\right]^3\right]^{-1} = \frac{64}{175}.$$

So that now

$$1 - P_3 = 1 - \frac{27}{64} = 1 - \frac{64}{175} = \frac{148}{175}$$

(22.	The number in the system is a birth and death process with parameters	
	$\lambda_n = \lambda/(n+1), n \ge 0$	
	$\mu_n = \mu, n \ge 1.$	
на удор об воступно в не до в до постор на постор на при до пред на при до постор на постор на постор на посто	From Equation (5.3),	
	$1/P_0 = 1 + \sum_{n=1}^{\infty} (\lambda/\mu)^n/n! = e^{\lambda/\mu}$	
	and	
	$P_n = P_0(\lambda/\mu)^n/n! = e^{-\lambda/\mu}(\lambda/\mu)^n/n!, n \ge 0.$	
, (23.	Let the state denote the number of machines that	
1	are down. This yields a birth and death process with	
~3	$\lambda_0 = \frac{3}{10}, \ \lambda_1 = \frac{2}{10}, \ \lambda_2 = \frac{1}{10}, \ \lambda_i = 0, i \ge 3$	
was a first of the second and the se	$ \mu_1 = \frac{1}{8}, \ \mu_2 = \frac{2}{8}, \ \mu_3 = \frac{2}{8}. $	
	The balance equations reduce to	
	$P_1 = \frac{3/10}{1/8} P_0 = \frac{12}{5} P_0$	
	$P_2 = \frac{2/10}{2/8}P_1 = \frac{4}{5}P_1 = \frac{48}{25}P_0$	
	$P_3 = \frac{1/10}{2/8}P_2 = \frac{4}{10}P_3 = \frac{192}{250}P_0.$	
	Hence, using $\sum_{i=0}^{3} P_{i} = 1$, yields	
	$P_0 = \left[1 + \frac{12}{5} + \frac{48}{25} + \frac{192}{250}\right]^{-1} = \frac{250}{1522}.$	
	(a) Average number not in use	
	$= P_1 + 2P_2 + 3P_3 = \frac{2136}{1522} = \frac{1068}{761}.$	
	(b) Proportion of time both repairmen are busy	
errenrengen den flej in det Francisco de Legens (von vergiff bleegt begrept de de Aldrift Manuscher vers vergrep det geen virige Angelen (de Aldrift Manuscher vers vergrep det geen virige Angelen (de Aldrift Manuscher vers vergrep det geen vergrep de Aldrift Manuscher vers vergrep de Aldrift Manuscher vergrep de Aldrif		
	$= P_2 + P_3 = \frac{672}{1522} = \frac{336}{761}.$	

Chapter 7

- (1.) (a) Yes, (b) no, (c) no.
- (2.) (a) S_n is Poisson with mean $n\mu$.

(b)
$$P\{N(t) = n\}$$

 $= P\{N(t) \ge n\} - P\{N(t) \ge n + 1\}$
 $= P\{S_n \le t\} - P\{S_{n+1} \le t\}$
 $= \sum_{k=0}^{[t]} e^{-n\mu} (n\mu)^k / k!$
 $- \sum_{k=0}^{[t]} e^{-(n+1)\mu} [(n+1)\mu]^k / k!,$

where [t] is the largest integer not exceeding t.

3. By the one-to-one correspondence of m(t) and F, it follows that $\{N(t), t \ge 0\}$ is a Poisson process with rate 1/2. Hence,

$$P\{N(5)=0\}=e^{-5/2}$$
.

- 4. (a) No! Suppose, for instance, that the interarrival times of the first renewal process are identically equal to 1. Let the second be a Poisson process. If the first interarrival time of the process $\{N(t), t \geq 0\}$ is equal to 3/4, then we can be certain that the next one is less than or equal to 1/4.
 - No! Use the same processes as in (a) for a counter example. For instance, the first interarrival will equal 1 with probability $e^{-\lambda}$, where λ is the rate of the Poisson process. The probability will be different for the next interarrival.

No, because of (a) or (b).

tandom variable N is equal to N(I) + 1 where is the renewal process whose interarrival ample 2e

$$a^{(1)} + 1 = e.$$

Once gvery five months.

Chapter 10

$$(1) X(s) + X(t) = 2X(s) + X(t) - X(s).$$

Now 2X(s) is normal with mean 0 and variance 4s and X(t) - X(s) is normal with mean 0 and variance t - s. As X(s) and X(t) - X(s) are independent, it follows that X(s) + X(t) is normal with mean 0 and variance 4s + t - s = 3s + t.

The conditional distribution X(s) - A given that $X(t_1) = A$ and $X(t_2) = B$ is the same as the conditional distribution of $X(s - t_1)$ given that X(0) = 0 and $X(t_2 - t_1) = B - A$, which by (1.4) is normal with mean $\frac{s - t_1}{t_2 - t_1}(B - A)$ and variance $\frac{(s - t_1)}{t_2 - t_1}$ ($t_2 - s$). Hence the desired conditional distribution is normal with mean $A + \frac{(s - t_1)(B - A)}{t_2 - t_1}$ and variance $\frac{(s - t_1)(t_2 - s)}{t_2 - t_1}$.

$$(3) E[X(t_1)X(t_2)X(t_3)]$$

$$= E[E[X(t_1)X(t_2)X(t_3) \mid X(t_1), X(t_2)]]$$

$$= E[X(t_1)X(t_2)E[X(t_3) \mid X(t_1), X(t_2)]]$$

$$= E[X(t_1)X(t_2)X(t_2)]$$

$$= E[E[X(t_1)E[X^2(t_2) \mid X(t_1)]]$$

$$= E[X(t_1)E[X^2(t_2) \mid X(t_1)]]$$

$$= E[X(t_1)\{(t_2 - t_1) + X^2(t_1)\}]$$

$$= E[X^3(t_1)] + (t_2 - t_1)E[X(t_1)]$$

$$= 0$$

where the equality (*) follows since given $X(t_1)$, $X(t_2)$ is normal with mean $X(t_1)$ and variance $t_2 - t_1$. Also, $E[X^3(t)] = 0$ since X(t) is normal with mean 0.

(4) (a)
$$P\{T_a < \infty\} = \lim_{t \to \infty} P\{T_a \le t\}$$

$$= \frac{2}{\sqrt{2r}} \int_0^\infty e^{-y^2/2} dy \text{ by (10.6)}$$

$$= 2P\{N(0,1) > 0\} = 1.$$

Part (b) can be proven by using

$$E[T_a] = \int_0^\infty P\{T_a > t\} dt$$

in conjunction with (2.3).

(5.)
$$P\{T_1 < T_{-1} < T_2\} = P\{\text{hit 1 before } -1 \text{ before 2}\}$$

$$= P\{\text{hit 1 before } -1\}$$

$$\times P\{\text{hit } -1 \text{ before 2} \mid \text{hit 1 before } -1\}$$

$$= \frac{1}{2}P\{\text{down 2 before up 1}\}$$

$$= \frac{1}{2}\frac{1}{3} = \frac{1}{6}.$$

The next to last equality follows by looking at the Brownian motion when it first hits 1.

6. The probability of recovering your purchase price is the probability that a Brownian motion goes up *c* by time *t*. Hence the desired probability is

$$1 - P\{\max_{0 \le s \le t} X(s) \ge c\} = 1 - \frac{2}{\sqrt{2\pi t}} \int_{c/\sqrt{t}}^{\infty} e^{-y^2/2} dy$$

7) Let $M = \{\max_{t_1 \le s \le t_2} X(s) > x\}$. Condition on $X(t_1)$ to obtain

$$P(M) = \int_{-\infty}^{\infty} P(M|X(t_1) = y) \frac{1}{\sqrt{2\pi t_1}} e^{-y^2/2t_1} dy$$

Now, use that

$$P(M|X(t_1) = y) = 1 \quad y \ge x$$

and, for y < x

$$P(M|X(t_1) = y) = P\{\max_{0 < s < t_2 - t_1} X(s) > x - y\}$$

= $2P\{X(t_2 - t_1) > x - y\}$