FACULTY OF SCIENCE Department of Mathematics and Statistics Statistics 421 H(3-0) ## Mathematical Statistics (see Course Descriptions under the year applicable: http://www.ucalgary.ca/pubs/calendar/) ## Syllabus | <u>Topics</u> | Number of hours | |--|-----------------| | Review – Common univariate distributions; use of cdf, mgf, pdf; variable transformations (Jacobians, graphical domain transformation); distribution of order statistics. | 2 | | Multivariate Normal Distribution (MVN) - Definition, mgf, joint marginals, and constant density contours; distributions of linear combinations of MVN random variables. | 3 | | Limit Distributions - Concept of a degenerate distribution; convergence in distribution (use of the cdf, mgf); convergence in probability; proof of the CLT; use/proof of Slutsky's theorem. | 5 | | Sufficiency and Completeness - Concept of a sufficient set of statistics, factorization theorem; Rao-Blackwell theorem; concept of a complete family of distributions; completeness and uniqueness (Lehmann-Scheffe theorem); minimal sufficient and ancillery statistics; completeness and independence (Basu's theorem); minimum variance unbiased estimation; Cramer-Rao inequality. | 8 | | Exponential family of distributions | 2 | | LR Tests - A review of the Neyman-Pearson lemma; the Likelihood Ratio test; power of a test, uniformly most powerful test; noncentral t, chi-square, and F distributions. | 5 | | Normal Models - Cochran's theorem on quadratic forms (no proof); chi-square tests; analysis of variance. | 5 | | Additional Topics - Selections from the following topics should constitute about 6-8 hours: sequential tests; general linear model; nonparametric tests (sign, Wilcoxon); Bayesian statistical inference. Topics should be selected in | 6 | accordance with class interests in mind, and emphasize applications. ## TOTAL HOURS 36 * * * * * * * Date: August, 2013 Creator: DPMS