

FACULTY OF SCIENCE Department of Mathematics and Statistics

Statistics 421 H(3-0)

Mathematical Statistics

(see Course Descriptions under the year applicable: <u>http://www.ucalgary.ca/pubs/calendar/</u>)

Syllabus

Torriso	Number of
<u>Topics</u>	<u>Number of</u> <u>hours</u>
Review – Common univariate distributions; use of cdf, mgf, pdf; variable transformations (Jacobians, graphical domain transformation); distribution of order statistics.	2
Multivariate Normal Distribution (MVN) - Definition, mgf, joint marginals, and constant density contours; distributions of linear combinations of MVN random variables.	3
Limit Distributions - Concept of a degenerate distribution; convergence in distribution (use of the cdf, mgf); convergence in probability; proof of the CLT; use/proof of Slutsky's theorem.	5
Sufficiency and Completeness - Concept of a sufficient set of statistics, factorization theorem; Rao-Blackwell theorem; concept of a complete family of distributions; completeness and uniqueness (Lehmann-Scheffe theorem); minimal sufficient and ancillery statistics; completeness and independence (Basu's theorem); minimum variance unbiased estimation; Cramer-Rao inequality.	8
Exponential family of distributions	2
LR Tests - A review of the Neyman-Pearson lemma; the Likelihood Ratio test; power of a test, uniformly most powerful test; noncentral t, chi-square, and F distributions.	5
Normal Models - Cochran's theorem on quadratic forms (no proof); chi-square tests; analysis of variance.	5
Additional Topics - Selections from the following topics should constitute about 6-8 hours: sequential tests; general linear model; nonparametric tests (sign, Wilcoxon); Bayesian statistical inference. Topics should be selected in	6

accordance with class interests in mind, and emphasize applications.

TOTAL HOURS

36

Course Outcomes:

The student successfully completing this course will be able to

- 1. derive distributions of functions of random variables by applying the change of variable technique, the cumulative distribution function technique, and the moment generating function technique;
- 2. define a random sample and statistics (including estimators and order statistics) and obtain their sampling distributions;
- 3. define the multivariate normal distribution and explain some of its applications;
- 4. use different modes of convergence (i.e., convergence in probability, convergence in distributions) and well-known asymptotic results (e.g., Weak Law of Large Numbers, Central Limit Theorem) to study large-sample properties of estimators (e.g., limiting and asymptotic distributions;
- 5. apply the concepts of sufficiency and completeness to derive minimum variance unbiased estimators;
- 6. define most powerful (MP), uniformly most powerful (UMP), and likelihood ratio tests and obtain them via, e.g., the Neyman-Pearson Theorem;
- 7. obtain and apply chi-square goodness-of-fit tests, analysis of variance, regression analysis, the chi-square test of independence, the sign test and some nonparametric tests;
- 8. define the prior and posterior distributions, a conjugate prior, and predictive distributions;
- 9. apply the statistical software R for carrying out probability and statistical calculations.

Date: September 2016 Creator: ADL/DPMS JM

* * * * * *