

## FACULTY OF SCIENCE Department of Mathematics and Statistics

## Statistics 721 H(3-0)

## Theory of Estimation

**Calendar Description:** Likelihood function and likelihood principle, sufficiency, completeness of exponential families, Cramer-Rao lower bound, Lehmann-Scheffe Theorem, Rao-Blacwell Theorem, estimation methods, basic asymptotic theory, consistent asymptotic normal estimators (CAN), asymptotic properties of the maximum likelihood estimators, Bayesian estimation.

Prerequisites: Statistics 323 or Mathematics 323, and Mathematics 353 or 367 or 381.

(see Course Descriptions under the year applicable: <a href="http://www.ucalgary.ca/pubs/calendar/">http://www.ucalgary.ca/pubs/calendar/</a>)

## Syllabus

| <u>Topics</u>                                                                                                                                                                                                                                                                             | Number of hours |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| <b>Sufficiency and Completeness -</b> Likelihood function and likelihood principle, sufficient and minimal sufficient statistics, completeness of families of distributions, exponential families of distributions, Cramer-Rao lower bound, Lehmann-Scheffe Theorem, Rao-Blacwell Theorem | 10              |
| Methods of Estimation - Moments, least square, maximum likelihood                                                                                                                                                                                                                         | 4               |
| <b>Basic Asymptotic Theory -</b> Convergence in probability, in mean squared error and in distribution, Slutsky's Theorem                                                                                                                                                                 | 6               |
| <b>Asymptotic Normal Theory -</b> Consistent asymptotic normal estimators (CAN), asymptotic properties of the maximum likelihood estimators                                                                                                                                               | 6               |
| <b>Bayesian estimation</b> - Prior and posterior distributions, non-informative priors, Jeffreys priors, Bayesian mean squared estimation and absolute error estimation, credible sets and highest posterior density (HPD) sets                                                           | 10              |
| community (in D) dots                                                                                                                                                                                                                                                                     |                 |
| TOTAL HOURS                                                                                                                                                                                                                                                                               | 36              |

\* \* \*

Date: December, 2013

Creator: GC/rs