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ABSTRACT
Let 𝔼𝑑

denote the 𝑑-dimensional Euclidean space. The 𝑟-ball body generated by a given set in 𝔼𝑑
is the intersection of balls

of radius 𝑟 centered at the points of the given set. The author [Discrete Optimization 44/1 (2022), Paper No. 100539] proved

the following Blaschke–Santaló-type inequalities for 𝑟-ball bodies: for all 0 < 𝑘 < 𝑑 and for any set of given 𝑑-dimensional

volume in 𝔼𝑑
the 𝑘-th intrinsic volume of the 𝑟-ball body generated by the set becomes maximal if the set is a ball. In this note

we give a new proof showing also the uniqueness of the maximizer. Some applications and related questions are mentioned

as well.
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1. INTRODUCTION
We denote the Euclidean norm of a vector 𝐩 in the 𝑑-dimensional Euclidean space 𝔼𝑑

, 𝑑 > 1

by |𝐩| ∶=
√
⟨𝐩, 𝐩⟩, where ⟨⋅, ⋅⟩ is the standard inner product. Let 𝐴 ⊂ 𝔼𝑑

be a compact convex

set, and 1 ≤ 𝑘 ≤ 𝑑. We denote the 𝑘-th intrinsic volume of 𝐴 by V𝑘 (𝐴). It is well known that

V𝑑 (𝐴) is the 𝑑-dimensional volume of 𝐴, 2V𝑑−1 (𝐴) is the surface area of 𝐴, and
2𝜔𝑑−1

𝑑𝜔𝑑
V1 (𝐴) is

equal to the mean width of 𝐴, where 𝜔𝑑 stands for the volume of a 𝑑-dimensional unit ball, that is,

𝜔𝑑 =
𝜋

𝑑
2

Γ(1+ 𝑑

2
)
. (For more details on intrinsic volumes see for example, [8]). In this note, for simplicity

V𝑘 (∅) = 0 for all 1 ≤ 𝑘 ≤ 𝑑. The closed Euclidean ball of radius 𝑟 centered at 𝐩 ∈ 𝔼𝑑
is denoted by

𝐁𝑑[𝐩, 𝑟] ∶= {𝐪 ∈ 𝔼𝑑 ∣ |𝐩 − 𝐪| ≤ 𝑟}.

DEFINITION 1.1. For a set ∅ ≠ 𝑋 ⊆ 𝔼𝑑
, 𝑑 > 1 and 𝑟 > 0 let the 𝑟-ball body 𝑋 𝑟

generated by 𝑋 be

defined by 𝑋 𝑟 ∶= ⋂𝐱∈𝑋 𝐁𝑑[𝐱, 𝑟].

* Corresponding author. E-mail: kbezdek@ucalgary.ca

Unauthenticated | Downloaded 12/20/23 02:52 AM UTC

https://doi.org/10.1556/314.2023.00014


150 Mathematica Pannonica New Series 29 /NS 3/ (2023) 2, 149–152

We note that either 𝑋 𝑟 = ∅, or 𝑋 𝑟
is a point, or int(𝑋 𝑟 ) ≠ ∅. Perhaps not surprisingly, 𝑟-ball

bodies of 𝔼𝑑
have already been investigated in a number of papers however, under various names

such as “überkonvexe Menge” ([12]), “𝑟-convex domain” ([6]), “spindle convex set” ([1], [10]), “ball

convex set” ([11]), “hyperconvex set” ([7]), and “𝑟-dual set” ([2]). 𝑟-ball bodies satisfy some basic

identities such as ((𝑋
𝑟 )𝑟)

𝑟
= 𝑋 𝑟

and (𝑋 ∪ 𝑌 )𝑟 = 𝑋 𝑟 ∩ 𝑌 𝑟
, which hold for any 𝑋 ⊆ 𝔼𝑑

and 𝑌 ⊆ 𝔼𝑑
.

Clearly, the operation is order-reversing namely, 𝑋 ⊆ 𝑌 ⊆ 𝕄𝑑
implies 𝑌 𝑟 ⊆ 𝑋 𝑟

. In this note we

investigate volumetric relations between 𝑋 𝑟
and 𝑋 in 𝔼𝑑

. First, recall the theorem of Gao, Hug, and

Schneider [8] stating that for any convex body of given volume in 𝕊𝑑 the volume of the spherical

polar body is maximal if the convex body is a ball. The author has proved the following Euclidean

analogue of their theorem in [2]. Let 𝐀 ⊂ 𝔼𝑑
, 𝑑 > 1 be a compact set of volume 𝑉𝑑(𝐀) > 0 and 𝑟 > 0.

If 𝐁 ⊆ 𝔼𝑑
is a ball with 𝑉𝑑(𝐀) = 𝑉𝑑(𝐁), then

𝑉𝑑(𝐀
𝑟
) ≤ 𝑉𝑑(𝐁

𝑟
). (1.1)

As the theorem of Gao, Hug, and Schneider [8] is often called a spherical counterpart of the Blaschke–

Santaló inequality, therefore one may refer to (1.1) as a Blaschke–Santaló-type inequality for 𝑟-

ball bodies in 𝔼𝑑
. Next recall that (1.1) has been extended by the author to spherical as well as

hyperbolic spaces ([2]) and then to intrinsic volumes ([4]) proving the following Blaschke–Santaló-

type inequalities for intrinsic volumes of 𝑟-ball bodies in 𝔼𝑑
without precise equality condition,

which we included here. (See [3] for the core ideas behind Theorem 1.2 and [13, Theorem 3.1] for a

randomized version.)

THEOREM 1.2. Let 𝐀 ⊂ 𝔼𝑑
, 𝑑 > 1 be a compact set of volume 𝑉𝑑(𝐀) > 0 and 𝑟 > 0. If 𝐁 ⊂ 𝔼𝑑

is a ball

with 𝑉𝑑(𝐀) = 𝑉𝑑(𝐁), then

𝑉𝑘(𝐀
𝑟
) ≤ 𝑉𝑘(𝐁

𝑟
) (1.2)

holds for all 1 ≤ 𝑘 ≤ 𝑑 with equality if and only if 𝐀 is congruent (i.e., isometric) to 𝐁.

Fodor, Kurusa, and Vígh [7] have proved the following inequality for 𝑘 = 𝑑, which we extended

to other intrinsic volumes as well. Corollary 1.3 follows from Theorem 1.2, the homogeneity (of

degree 𝑘) of 𝑘-th intrinsic volume, and from the observation that 𝑓 (𝑥) = 𝑥𝑘(𝑟 − 𝑥)𝑘 , 0 ≤ 𝑥 ≤ 𝑟 has a

unique maximum value at 𝑥 = 𝑟

2
for any 𝑑 > 1, 1 ≤ 𝑘 ≤ 𝑑, and 𝑟 > 0.

COROLLARY 1.3. Let 𝑑 > 1, 1 ≤ 𝑘 ≤ 𝑑, 𝑟 > 0, and 𝐀 ⊂ 𝔼𝑑
be an 𝑟-ball body. Set 𝑃𝑘(𝐀) ∶= 𝑉𝑘(𝐀)𝑉𝑘(𝐀

𝑟 ).

Then

𝑃𝑘(𝐀) ≤ 𝑃𝑘 (
𝐁
𝑑

[
𝐨,

𝑟

2])

with equality if and only if 𝐀 is congruent to 𝐁𝑑[𝐨, 𝑟
2
].

As a further application we mention that Theorem 1.2 has been used in [4] (see also [2]) to

prove the long-standing Kneser–Poulsen conjecture for uniform contractions of intersections of

sufficiently many congruent balls. We close this section with the following complementary question

to Theorem 1.2, which seems to be new and open, and can be regarded as a Mahler-type problem

for 𝑟-ball bodies.

OPEN PROBLEM 1. Let 𝑑 > 2, 1 ≤ 𝑘 ≤ 𝑑, and 0 < 𝑣 < 𝑟𝑑𝜔𝑑 = 𝑉𝑑(𝐁
𝑑[𝐨, 𝑟]). Find the minimum of 𝑉𝑘(𝐀

𝑟 )

for all 𝑟-ball bodies 𝐀 ⊂ 𝔼𝑑
of given volume 𝑣 = 𝑉𝑑(𝐀).

REMARK 1.4. Problem 1 for 𝑑 = 2 can be answered as follows. Let 0 < 𝑣 < 𝜋𝑟2. Then the minimum

of 𝑉1(𝐀
𝑟 ) (resp., 𝑉2(𝐀

𝑟 )) for all 𝑟-disk domains 𝐀 ⊂ 𝔼2
of given area 𝑣 = 𝑉2(𝐀) is attained only for

𝑟-lenses, which are intersections of two disks of radius 𝑟 .

In the rest of this note we give a short proof for Theorem 1.2 (which uses the Brunn–Minkowski

inequality and the isoperimetric inequality instead of the Alexandrov-Fenchel inequality applied in

[4]) and derive Remark 1.4.

Unauthenticated | Downloaded 12/20/23 02:52 AM UTC



Mathematica Pannonica New Series 29 /NS 3/ (2023) 2, 149–152 151

2. PROOF OF THEOREM 1.2
Clearly, if 𝐁𝑟 = ∅, then 𝐀𝑟 = ∅ and (1.2) follows. Similarly, it is easy to see that if 𝐁𝑟

is a point in 𝔼𝑑
,

then (1.2) follows. Hence, we may assume that 𝐁𝑟 = 𝐁𝑑[𝐨, 𝑅] and 𝐁 = 𝐁𝑑[𝐨, 𝑟 − 𝑅] with 0 < 𝑅 < 𝑟 ,

where 𝐨 denotes the origin in 𝔼𝑑
.

DEFINITION 2.1. Let ∅ ≠ 𝐾 ⊂ 𝔼𝑑
, 𝑑 > 1 and 𝑟 > 0. Then the 𝑟-ball convex hull conv𝑟 𝐾 of 𝐾 is

defined by

conv𝑟 𝐾 ∶= ⋂{𝐁
𝑑
[𝐱, 𝑟] ∣ 𝐾 ⊆ 𝐁

𝑑
[𝐱, 𝑟]}.

Moreover, let the 𝑟-ball convex hull of 𝔼𝑑
be 𝔼𝑑

. Furthermore, we say that 𝐾 ⊆ 𝔼𝑑
is 𝑟-ball convex if

𝐾 = conv𝑟 𝐾 .

REMARK 2.2. We note that clearly, conv𝑟 𝐾 = ∅ if and only if 𝐾 𝑟 = ∅. Moreover, ∅ ≠ 𝐾 ⊂ 𝔼𝑑
is 𝑟-ball

convex if and only if 𝐾 is an 𝑟-ball body.

We need [2, Lemma 5] stated as

LEMMA 2.3. If ∅ ≠ 𝐾 ⊆ 𝔼𝑑
, 𝑑 > 1 and 𝑟 > 0, then 𝐾 𝑟 = (conv𝑟 𝐾)

𝑟
.

Now, via Lemma 2.3 we may assume that 𝐀 ⊂ 𝔼𝑑
is an 𝑟-ball body of volume 𝑉𝑑(𝐀) > 0 and

𝐁 = 𝐁𝑑[𝐨, 𝑟 − 𝑅] with 0 < 𝑅 < 𝑟 such that 𝑉𝑑(𝐀) = 𝑉𝑑(𝐁). Next, recall [3, Proposition 2.5] which we

state as

LEMMA 2.4. Let 𝑑 > 1 and 𝑟 > 0. If 𝐀 ⊂ 𝔼𝑑
is an 𝑟-ball body, then 𝐀 + (−𝐀𝑟 ) = 𝐁𝑑[𝐨, 𝑟], where +

denotes the Minkowski sum.

Thus, the Brunn–Minkowski inequality for intrinsic volumes ([9], Eq. (74)) and Lemma 2.4 imply

𝑉𝑘(𝐀)
1

𝑘 + 𝑉𝑘(𝐀
𝑟
)
1

𝑘 = 𝑉𝑘(𝐀)
1

𝑘 + 𝑉𝑘(−𝐀
𝑟
)
1

𝑘 ≤ 𝑉𝑘(𝐀 + (−𝐀
𝑟
))

1

𝑘 = 𝑉𝑘(𝐁
𝑑
[𝐨, 𝑟])

1

𝑘 (2.1)

with equality if and only if (𝐀 and −𝐀𝑟
are homothetic, i.e.,) 𝐀 is congruent to 𝐁, where 1 ≤ 𝑘 ≤ 𝑑.

Finally, (2.1), the isoperimetric inequality for intrinsic volumes stating that among convex bodies of

given volume the balls have the smallest 𝑘-th intrinsic volume ([14, Section 7.4]), and the homogeneity

(of degree 𝑘) of 𝑘-th intrinsic volume imply

𝑉𝑘(𝐀
𝑟
)
1

𝑘 ≤ 𝑉𝑘(𝐁
𝑑
[𝐨, 𝑟])

1

𝑘 − 𝑉𝑘(𝐀)
1

𝑘 ≤ 𝑉𝑘(𝐁
𝑑
[𝐨, 𝑟])

1

𝑘 − 𝑉𝑘(𝐁
𝑑
[𝐨, 𝑟 − 𝑅])

1

𝑘

= 𝑉𝑘(𝐁
𝑑
[𝐨, 𝑅])

1

𝑘 = 𝑉𝑘(𝐁
𝑟
)
1

𝑘 ,

with 𝑉𝑘(𝐀
𝑟 )

1

𝑘 = 𝑉𝑘(𝐁
𝑟 )

1

𝑘 if and only if 𝐀 is congruent to 𝐁, where 1 ≤ 𝑘 ≤ 𝑑. This completes the

proof of Theorem 1.2.

3. PROOF OF REMARK 1.4
Let 0 < 𝑣 < 𝜋𝑟2. Let 𝐀 ⊂ 𝔼2

be an 𝑟-disk domain of area 𝑣 = 𝑉2(𝐀). Lemma 2.4 implies that

𝑉1(𝐀) + 𝑉1(𝐀
𝑟
) = 𝜋𝑟. (3.1)

Next, according to the reverse isoperimetric inequality of 𝑟-disk domains, which has been proved

by Borisenko and Drach [5] (see [7] for a different proof without uniqueness of the extremal set),

we have that

𝑉1(𝐀) ≤ 𝑉1(𝐋), (3.2)

where 𝐋 denotes the 𝑟-lens of area 𝑣 in 𝔼2
. Moreover, equality holds in (3.2) if and only if 𝐀 is

conguent to 𝐋. Thus, (3.1) and (3.2) imply that 𝜋𝑟 − 𝑉1(𝐋) ≤ 𝑉1(𝐀
𝑟 ). It follows via (3.1) that

𝑉1(𝐋
𝑟
) = 𝜋𝑟 − 𝑉1(𝐋) ≤ 𝑉1(𝐀

𝑟
) (3.3)

with equality if and only if 𝐀 is congruent to 𝐋. Finally, observe that (3.2) is equivalent to the

statement that if 𝐀′
is an 𝑟-disk domain and 𝐋′ is an 𝑟-lens with 𝑉1(𝐀

′) = 𝑉1(𝐋
′), then

𝑉2(𝐋
′
) ≤ 𝑉2(𝐀

′
) (3.4)

with equality if and only if 𝐀′
is conguent to 𝐋′. Hence, (3.3) combined with (3.4) yields

𝑉2(𝐋
𝑟
) ≤ 𝑉2(𝐀

𝑟
)
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with equality if and only if 𝐀 is congruent to 𝐋. This completes the proof of Remark 1.4.
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