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Abstract A ball-polyhedron is the intersection with non-empty interior of finitely
many (closed) unit balls in Euclidean 3-space. One can represent the boundary of a
ball-polyhedron as the union of vertices, edges, and faces defined in a rather natural
way. A ball-polyhedron is called a simple ball-polyhedron if at every vertex exactly
three edges meet. Moreover, a ball-polyhedron is called a standard ball-polyhedron if
its vertex–edge–face structure is a lattice (with respect to containment). To each edge
of a ball-polyhedron, one can assign an inner dihedral angle and say that the given
ball-polyhedron is locally rigid with respect to its inner dihedral angles if the vertex–
edge–face structure of the ball-polyhedron and its inner dihedral angles determine the
ball-polyhedron up to congruence locally. The main result of this paper is a Cauchy-
type rigidity theorem for ball-polyhedra stating that any simple and standard ball-
polyhedron is locally rigid with respect to its inner dihedral angles.
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1 Introduction

Let E
3 denote the three-dimensional (3D) Euclidean space. As in [3,4] a ball-

polyhedron is the intersection with non-empty interior of finitely many closed con-
gruent balls in E

3. In fact, one may assume that the closed congruent 3D balls in
question are of unit radius, that is, they are unit balls of E

3. Also, it is natural to
assume that removing any of the unit balls defining the intersection in question yields
the intersection of the remaining unit balls becoming a larger set. (Equivalently, using
the terminology introduced in [4], whenever we take a ball-polyhedron, we always
assume that it is generated by a reduced family of unit balls.) Furthermore, follow-
ing [3,4], one can represent the boundary of a ball-polyhedron in E

3 as the union of
vertices, edges, and faces defined in a rather natural way. A standard ball-polyhedron
is one boundary structure of which is not “pathological”: its vertex–edge–face struc-
ture is a lattice (called the face lattice of the given standard ball-polyhedron). For the
definitions of vertex, edge, face, and standardness, see Sect. 3. In order to get a more
complete picture on ball-polyhedra, we refer the interested reader to [3,4] as well
as [8].

One of the best-known results in the geometry of convex polyhedra is Cauchy’s
rigidity theorem: If two convex polyhedra P and Q in E

3 are combinatorially equiva-
lent with the corresponding faces being congruent, then the angles between the corre-
sponding pairs of adjacent faces are also equal and thus, P is congruent to Q. Putting it
somewhat differently, the combinatorics of an arbitrary convex polyhedron and its face
angles completely determine its inner dihedral angles. For more details on Cauchy’s
rigidity theorem and on its extensions, we refer the interested reader to [5]. In our joint
paper [3], we have been looking for analogs of Cauchy’s rigidity theorem for ball-
polyhedra. In order to quote properly, the relevant results from [3] we need to recall the
following terminology. To each edge of a ball-polyhedron in E

3 we can assign an inner
dihedral angle. In other words, take any point p in the relative interior of the edge,
and take the two unit balls that contain the two faces of the ball-polyhedron meeting
along that edge. Now, the inner dihedral angle along this edge is the angular measure
of the intersection of the two half-spaces supporting the two unit balls at p. The angle
in question is obviously independent of the choice of p. Moreover, at each vertex of a
face of a ball-polyhedron, there is a face angle formed by the two edges meeting at the
given vertex (which is, in fact, the angle between the two tangent halflines of the two
edges meeting at the given vertex). Finally, we say that the standard ball-polyhedron P
in E

3 is globally rigid with respect to its face angles (resp., its inner dihedral angles)
if the following holds. If Q is another standard ball-polyhedron in E

3 face lattice of
which is isomorphic to that of P and face angles of which (resp., inner dihedral angles)
are equal to the corresponding face angles (resp. inner dihedral angles) of P, then Q
is congruent to P. We note that in [3], we used the word “rigid” for this notion. We
change that terminology to “globally rigid” because in the present paper, we consider
a local version of the problem using the term “locally rigid.”

Furthermore, a ball-polyhedron of E
3 is called simplicial if all its faces are bounded

by three edges. It is not hard to see that any simplicial ball-polyhedron is, in fact,
a standard one. Now, we are ready to state the main (rigidity) result of [3]: The
face lattice and the face angles determine the inner dihedral angles of any standard
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ball-polyhedron in E
3. In particular, if P is a simplicial ball-polyhedron in E

3, then
P is globally rigid with respect to its face angles. The following fundamental analog
question is still an open problem (see [2, p. 63]).

Problem 1.1 Prove or disprove that the face lattice and the inner dihedral angles
determine the face angles of any standard ball-polyhedron in E

3.

One can regard this problem as an extension of the (still unresolved) conjecture of
Stoker [12] according to which for convex polyhedra, the face lattice and the inner
dihedral angles determine the face angles. For an overview on the status of the Stoker
conjecture and in particular, for the recent remarkable result of Mazzeo and Mont-
couquiol on proving the infinitesimal version of the Stoker conjecture, see [10]. The
following special case of Problem 1.1 has already been put forward as a conjecture in
[3]. For this, we need to recall that a ball-polyhedron is called a simple ball-polyhedron,
if, at every vertex, exactly three edges meet. Now, based on our terminology introduced
above, the conjecture in question [3, p. 257] can be phrased as follows:

Conjecture 1.2 Let P be a simple and standard ball-polyhedron of E
3. Then P is

globally rigid with respect to its inner dihedral angles.

We do not know whether the conditions of Conjecture 1.2 are necessary. However,
if the ball-polyhedron Q fails to be a standard ball-polyhedron because it possesses
a pair of faces sharing more than one edge, then Q is flexible (so, it is not globally
rigid) as shown in Sect. 4 of [3].

The main result of the present paper, Theorem 2.1, is a local version of
Conjecture 1.2.

2 Main Result

We say that the standard ball-polyhedron P of E
3 is locally rigid with respect to its

inner dihedral angles, if there is an ε > 0 with the following property. If Q is another
standard ball-polyhedron of E

3 face lattice of which is isomorphic to that of P and
inner dihedral angles of which are equal to the corresponding inner dihedral angles of
P such that the corresponding faces of P and Q lie at Hausdorff distance at most ε

from each other, then P and Q are congruent.
Now, we are ready to state the main result of this paper.

Theorem 2.1 Let P be a simple and standard ball-polyhedron of E
3. Then P is locally

rigid with respect to its inner dihedral angles.

Also, it is natural to say that the standard ball-polyhedron P of E
3 is locally rigid

with respect to its face angles, if there is an ε > 0 with the following property. If Q
is another standard ball-polyhedron of E

3 face lattice of which is isomorphic to that
of P and face angles of which are equal to the corresponding face angles of P such
that the corresponding faces of P and Q lie at Hausdorff distance at most ε from each
other, then P and Q are congruent. As according to [3] the face lattice and the face
angles determine the inner dihedral angles of any standard ball-polyhedron in E

3,

Theorem 2.1 implies the following claim in a straightforward way.

123



192 Discrete Comput Geom (2013) 49:189–199

Corollary 2.2 Let P be a simple and standard ball-polyhedron of E
3. Then P is

locally rigid with respect to its face angles.

In the rest of this paper, we give a proof of Theorem 2.1.

3 The Combinatorial Structure of a Ball-Polyhedron

Let P be a ball-polyhedron in E
3 given (as throughout the paper) by a reduced family

of generating balls. A boundary point is called a vertex if it belongs to at least three
of the closed unit balls defining the ball-polyhedron. A face of the ball-polyhedron
is the intersection of one of the generating closed unit balls with the boundary of the
ball-polyhedron. We say that the face of P corresponds to the center of the generating
ball. Finally, if the intersection of two faces is non-empty, then it is the union of
(possibly degenerate) circular arcs. The non-degenerate arcs are called edges of the
ball-polyhedron. Obviously, if a ball-polyhedron in E

3 is generated by at least three
unit balls, then it possesses vertices, edges, and faces. Clearly, the vertices, edges, and
faces of a ball-polyhedron (including the empty set and the ball-polyhedron itself)
are partially ordered by inclusion forming the vertex–edge–face structure of the given
ball-polyhedron.

We note that in [3], the vertex–edge–face structure of an arbitrary ball-polyhedron
is incorrectly referred to as a face lattice. Indeed, Figure 4.1 of [3] shows an example
of a ball-polyhedron vertex–edge–face structure of which is not a lattice (with respect
to inclusion). Thus, it is natural to define the following fundamental family of ball-
polyhedra: a ball-polyhedron in E

3 is a standard ball-polyhedron if its vertex–edge–
face structure is a lattice (with respect to inclusion). This is the case if, and only if,
the intersection of any two faces is either empty, or one vertex or one edge, and every
two edges share at most one vertex. In this case, we simply call the vertex–edge–face
structure in question the face lattice of the standard ball-polyhedron. This definition
implies that any standard ball-polyhedron of E

3 is generated by at least four unit balls.
In connection with the above definition, we note that the family of standard ball-

polyhedra was introduced and investigated in the more general, n-dimensional setting
in [4]. The 3D case of that definition (Definition 6.4 in [4]) coincides with the defi-
nition given above. (See also Remark 9.1 and the paragraph preceding it in [4].) For
more insight on the vertex–edge–face structure of ball-polyhedra in E

3, we refer the
interested reader to [8].

4 Infinitesimally Rigid Polyhedra, Dual Ball-Polyhedron, Truncated Delaunay
Complex

In this section, we introduce the notations and the main tools that are needed for our
proof of Theorem 2.1.

Recall that a convex polyhedron of E
3 is a bounded intersection of finitely many

closed halfspaces in E
3. A polyhedral complex in E

3 is a finite family of convex
polyhedra such that any vertex, edge, and face of a member of the family is again a
member of the family, and the intersection of any two members is empty or a vertex or
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an edge or a face of both members. In this paper, a polyhedron of E
3 means the union

of all members of a 3D polyhedral complex in E
3 possessing the additional property

that its (topological) boundary in E
3 is a surface in E

3 (i.e., a 2D topological manifold
embedded in E

3).
We denote the convex hull of a set C by [C] . Following [7], we call a polyhedron

Q in E
3

• weakly convex if its vertices are in convex position (i.e., if its vertices are the
vertices of a convex polyhedron);

• co-decomposable if its complement in [Q] can be triangulated (i.e., obtained as a
simplicial complex) without adding new vertices;

• weakly co-decomposable if it is contained in a convex polyhedron Q̃ such that all
vertices of Q are vertices of Q̃, and the complement of Q in Q̃ can be triangulated
without adding new vertices.

The boundary of every polyhedron in E
3 is the disjoint union of planar convex

polygons and hence, it can be triangulated without adding new vertices. Now, let P
be a polyhedron in E

3 and let T be a triangulation of its boundary without adding new
vertices. We call the 1-skeleton G(T ) of T the edge graph of T . By an infinitesimal flex
of the edge graph G(T ) in E

3,we mean an assignment of vectors to the vertices of G(T )

(i.e., to the vertices of P) such that the displacements of the vertices in the assigned
directions induce a zero first-order change of the edge lengths: (pi − p j )·(qi −q j ) = 0
for every edge pi p j of G(T ), where qi is the vector assigned to the vertex pi . An
infinitesimal flex is called trivial if it is the restriction of an infinitesimal rigid motion of
E

3. Finally, we say that the polyhedron P is infinitesimally rigid if every infinitesimal
flex of the edge graph G(T ) of T is trivial. (It is not hard to see that the infinitesimal
rigidity of a polyhedron is a well-defined notion i.e., independent of the triangulation
T . For more details on this as well as for an overview on the theory of rigidity we
refer the interested reader to [5].) We need the following remarkable rigidity theorem
of Izmestiev and Schlenker [7] for the proof of Theorem 2.1.

Theorem 4.1 (Izmestiev–Schlenker, [7]) Every weakly co-decomposable polyhedron
of E

3 is infinitesimally rigid.

We note that Izmestiev and Schlenker [7] give a different definition of a polyhedron
than ours, which yields a somewhat wider class of sets in E

3. Their theorem in its
original form contains the additional restriction that the polyhedron is “decomposable”
(i.e., it can be triangulated without new vertices), which automatically holds for sets
satisfying our narrower definition of a polyhedron. Last but not least, one of the referees
of our paper noted that by definition every weakly co-decomposable polyhedron is, in
fact, a weakly convex one, and therefore it is natural to state Theorem 4.1 in the above
form (i.e., not mentioning weakly convexity among the conditions).

The closed ball of radius ρ centered at p in E
3 is denoted by B(p, ρ). Also, it is

convenient to use the notation B(p) := B(p, 1). For a set C ⊆ E
3, we denote the

intersection of closed unit balls with centers in C by B(C) := ∩{B(c) : c ∈ C}. Recall
that every ball-polyhedron P = B(C) can be generated such that B(C \ {c}) �= B(C)

holds for any c ∈ C. Therefore, whenever we take a ball-polyhedron P = B(C), we
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always assume the above mentioned reduced property of C. The following duality
theorem has been proved in [3], which is also needed for our proof of Theorem 2.1.

Theorem 4.2 (Bezdek–Naszódi, [3]) Let P be a standard ball-polyhedron of E3. Then
the intersection P∗ of the closed unit balls centered at the vertices of P is another
standard ball-polyhedron face lattice of which is dual to that of P (i.e., there exists an
order reversing bijection between the face lattices of P and P∗).

For a more recent discussion on the above duality theorem and its generalizations,
we refer the interested reader to [8].

Let us give a detailed construction of the so-called truncated Delaunay complex of
an arbitrary ball-polyhedron, which is going to be the underlying polyhedral complex
of the given ball-polyhedron playing a central role in our proof of Theorem 2.1. We
leave some of the proofs of the claims mentioned in the rest of this section to the reader
partly because they are straightforward and partly because they are also well known
(see [1,11], and in particular, [6]).

The farthest-point Voronoi tiling corresponding to a finite set C := {c1, . . . , cn}
in E

3 is the family V := {V1, . . . , Vn} of closed convex polyhedral sets Vi :=
{x ∈ E

3 : |x − ci | ≥ |x − c j | for all j �= i, 1 ≤ j ≤ n}, 1 ≤ i ≤ n. (Here, a
closed convex polyhedral set means a not necessarily bounded intersection of finitely
many closed halfspaces in E

3.) We call the elements of V farthest-point Voronoi cells.
In the sequel, we omit the words “farthest-point” as we do not use the other (more
popular) Voronoi tiling: the one capturing closest points.

It is known that V is a tiling of E
3. We call the vertices, (possibly unbounded) edges

and (possibly unbounded) faces of the Voronoi cells of V simply the vertices, edges
and faces of V.

The truncated Voronoi tiling corresponding to C is the family V t of closed con-
vex sets {V1 ∩ B(c1), . . . , Vn ∩ B(cn)}. From the definition, it follows that V t =
{V1 ∩ P, . . . , Vn ∩ P} where P = B(C). We call elements of V t truncated Voronoi
cells.

Next, we define the (farthest-point) Delaunay complex D assigned to the finite set
C = {c1, . . . , cn} ⊂ E

3. It is a polyhedral complex on the vertex set C. For an index
set I ⊆ {1, . . . , n}, the convex polyhedron [ci : i ∈ I ] is a member of D if, and only
if, there is a point p in ∩{Vi : i ∈ I } which is not contained in any other Voronoi cell.
In other words, [ci : i ∈ I ] ∈ D if, and only if, there is a point p ∈ E

3 and a radius
ρ ≥ 0 such that {ci : i ∈ I } ⊂ bd B(p, ρ) and {ci : i /∈ I } ⊂ int B(p, ρ). It is known
that D is a polyhedral complex; in fact, it is a tiling of [C] by convex polyhedra.

Lemma 4.3 Let C = {c1, . . . , cn} ⊂ E
3 be a finite set, and V = {V1, . . . , Vn} be the

corresponding Voronoi tiling of E
3. Then

(V) For any vertex p ofV, there is an index set I ⊆ {1, . . . , n}with dim[ci : i ∈ I ] = 3
such that [ci : i ∈ I ] ∈ D and p = ∩{Vi : i ∈ I }.
And vice versa: if I ⊆ {1, . . . , n} with dim[ci : i ∈ I ] = 3 is such that
[ci : i ∈ I ] ∈ D, then ∩{Vi : i ∈ I } is a vertex of V.

(E) For any edge � of V, there is an index set I ⊆ {1, . . . , n} with dim[ci : i ∈ I ] = 2
such that [ci : i ∈ I ] ∈ D and � = ∩{Vi : i ∈ I }.
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And vica versa: if I ⊆ {1, . . . , n} with dim[ci : i ∈ I ] = 2 is such that
[ci : i ∈ I ] ∈ D, then ∩{Vi : i ∈ I } is an edge of V.

(F) For any face f of V, there is an index set I ⊆ {1, . . . , n} with |I | = 2 such that
[ci : i ∈ I ] ∈ D and f = ∩{Vi : i ∈ I }.
And vica versa: if I ⊆ {1, . . . , n} with |I | = 2 is such that [ci : i ∈ I ] ∈ D, then
∩{Vi : i ∈ I } is a face of V.

Proof We outline the proof of (V) as the rest follows the same argument. Let p be a
vertex of V, and let I = {i ∈ {1, . . . , n} : p ∈ Vi }. Now p lies on the boundary of
some Voronoi cells. The centers corresponding to these Voronoi cells are {ci : i ∈ I }.
As p is shared by their Voronoi cells, these centers are at an equal distance from p;
in other words, they lie on a sphere around p. Now, suppose that these centers are
co-planar. Then they lie on a circle such that the line, through the center of the circle
and perpendicular to the plane of the circle, passes through p. Then all the Voronoi
cells {Vi : i ∈ I } contain a relative neighborhood of p within this line. Thus, p is not
a vertex—a contradiction.

For the reverse statement: Let I be such that [ci : i ∈ I ] ∈ D and dim[ci : i ∈ I ]=3.

It follows from the first condition on I that ∩{Vi : i ∈ I } �= ∅, and from that second
condition that ∩{Vi : i ∈ I } is a singleton, say {p}. Clearly, p is a vertex of V . ��

We define the truncated Delaunay complex Dt corresponding to C similarly to D :
For an index set I ⊆ {1, . . . , n}, the convex polyhedron [ci : i ∈ I ] is a member of Dt

if, and only if, there is a point p in ∩{Vi ∩ B(ci ) : i ∈ I } which is not contained in any
other truncated Voronoi cell. Note that the truncated Voronoi cells are contained in the
ball-polyhedron B(C). Thus, [ci : i ∈ I ] ∈ Dt if, and only if, there is a point p ∈ B(C)

and a radius ρ ≥ 0 such that {ci : i ∈ I } ⊂ bd B(p, ρ) and {ci : i /∈ I } ⊂ int B(p, ρ)

(Fig. 1).

5 Proof of Theorem 2.1

Lemma 5.1 Let P = B(C) be a simple ball-polyhedron in E
3. Then no vertex of the

Voronoi tiling V corresponding to C is on bd P, and no edge of V is tangent to P.

Proof By (V) of Lemma 4.3, at least four Voronoi cells meet in any vertex of V.

Moreover, the intersection of each Voronoi cell with bd P is a face of P, as P is
generated by a reduced set of centers. Hence, if a vertex of V were on bd P, then at least
four faces of P would meet at a point, contradicting the assumption that P is simple.

Let � be en edge of V, and assume that it contains a point p ∈ bd P. By the
previous paragraph, p ∈ relint �. From Lemma 4.3 (E) it follows that p is in the
intersection of some Voronoi cells {Vi : i ∈ I } with dim[ci : i ∈ I ] = 2. Clearly,
� is orthogonal to the plane aff{ci : i ∈ I }. Finally, there is an ε > 0 such that
P ∩ B(p, ε) = B({ci : i ∈ I }) ∩ B(p, ε) and hence, � must intersect int P, as �

intersects int
(
B({ci : i ∈ I }) ∩ B(p, ε)

)
. ��

Lemma 5.2 Let P = B(C) be a simple ball-polyhedron in E
3. Then Dt is a sub-

polyhedral complex of D, that is, Dt ⊆ D, and faces, edges, and vertices of members
of Dt are again members of Dt .
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Fig. 1 Given four points, c1, . . . , c4. The bold solid lines bound the four Voronoi cells, V1, . . . , V4. The
bold dashed circular arcs bound the planar ball-polyhedron—a disk-polygon. The part of each Voronoi cell
inside the disk-polygon is the corresponding truncated Voronoi cell. On the first example, [c1, c3, c4] and
[c1, c3, c2] are the 2D Delaunay cells, and [c1, c2], [c1, c3], [c1, c4], [c2, c3], [c3, c4] are the 1D Delaunay
cells. The truncated Delaunay complex coincides with the non-truncated one. On the second example, the
Voronoi and the Delaunay complexes are the same as on the first, but the truncated Delaunay complex
is different. The only 2D-truncated Delaunay cell is [c1, c3, c4]. The 1D-truncated Delaunay cells are
[c1, c3], [c1, c4], [c3, c4]
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Proof Clearly, Dt ⊆ D, and their vertex sets are identical (both are C).
First, we show that a (two-dimensional—2D) face of a 3D member of Dt is again a

member of Dt . Let [ci : i ∈ I ] ∈ Dt be a 3D member of Dt . Then, the corresponding
vertex (Lemma 4.3 (V)) v of V is in int P by Lemma 5.1. For a given face of [ci : i ∈ I ] ,

there is a corresponding edge (Lemma 4.3 (E)) � of V. Clearly, v is an endpoint of �.

Now, relint �∩ P �= ∅, and thus, the face [ci : i ∈ I ] of V corresponding to � is in Dt .

Next, let [ci : i ∈ I ] ∈ Dt be a 2D member of Dt and let [ci , c j ] be one of its edges.
Then, for the corresponding edge � of V we have relint � ∩ P �= ∅. By Lemma 5.1,
� is not tangent to P, thus relint � ∩ int P �= ∅. Now, [ci , c j ] corresponds to a face
(Lemma 4.3 (F)) f of V. Clearly, � is an edge of f. As an edge of f intersects int P,

we have relint f ∩ P �= ∅ and hence, f ∩ P is a 2D face of the truncated Voronoi
tiling. It follows that [ci , c j ] is in Dt . ��

The following lemma helps us to understand the 2D members of Dt .

Let P = B(C) be a simple and standard ball-polyhedron in E
3. Denote by Q

the polyhedral complex formed by the 3D members of Dt and all of their faces,
edges and vertices (i.e., we drop “hanging” faces/edges/vertices of Dt , that is, those
faces/edges/vertices that do not belong to a 3D member). Clearly, ∪Q is a subset of E

3

and thus, its boundary is defined. We equip this boundary with a polyhedral complex
structure in the obvious way as follows: we define the boundary of Q as the collection
of those faces, edges and vertices of Q that lie on the boundary of ∪Q. We denote this
polyhedral complex by bd Q.

Lemma 5.3 Let P = B(C) be a simple and standard ball-polyhedron in E
3, and

Q be defined as above. Then the 2D members of bd Q are triangles, and a triangle
[c1, c2, c3] is in bd Q if, and only if, the corresponding faces F1, F2, F3 of P meet (at
a vertex of P).

Proof By Lemma 5.2, the 2D members of bd Q are 2D members of Dt . Let
[ci : i ∈ I ] ∈ Dt with dim[ci : i ∈ I ] = 2. Then clearly, [ci : i ∈ I ] ∈ D and, by
Lemma 4.3 (E), it corresponds to an edge � of V which intersects P. Now, � is a closed
line segment, or a closed ray, or a line. By Lemma 5.1, � is not tangent to P, and (by
Lemma 5.1) � has no endpoint on bd P. Thus, � intersects the interior of P. We claim
that � has at least one endpoint in int P. Suppose, it does not. Then � ∩ bd P is a pair
of points and so, the faces of P corresponding to indices in I meet at more than one
point. As |I | ≥ 3, it contradicts the assumption that P is standard. We remark that
this is a crucial point where we used the standardness of P. So, � has either one or two
endpoints in int P. If it has two, then the two distinct 3D Delaunay cells corresponding
to those endpoints (as in Lemma 4.3 (V)) are both members of Dt and contain the
planar convex polygon [cI : i ∈ I ] , and thus, [cI : i ∈ I ] is not on the boundary of Q.

If � has one endpoint in int P, then there is a unique 3D polyhedron in Dt (the one cor-
responding to that endpoint of �) that contains the planar convex polygon [ci : i ∈ I ] .

Moreover, in this case � intersects bd P at a vertex of P. As P is simple, that vertex
is contained in exactly three faces of P, and hence, [ci : i ∈ I ] is a triangle.

Next, working in the reverse direction, assume that F1, F2, and F3 are faces of P
that meet at a vertex v of P. Then v is in exactly three Voronoi cells, V1, V2 and V3.

Thus, [c1, c2, c3] ∈ D, and � := V1 ∩ V2 ∩ V3 is an edge of V. By the above argument,
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� has one endpoint in P and so, [c1, c2, c3] is a member of Dt , and has the property
that exactly one 3D member of Dt contains it. It follows that [c1, c2, c3] is in bd Q. ��

From the last paragraph of the proof and the fact that P has at least one vertex, we
can deduce the following

Remark 5.4 With the notations and the assumptions of Lemma 5.3, Dt contains at
least one 3D cell, and the vertex set of Q is C.

We recall that the nerve of a set family G is the abstract simplicial complex

N (G) := {{Gi ∈ G : i ∈ I } : ∩
i∈I

Gi �= ∅}
.

Now, let P = B(C) be a simple and standard ball-polyhedron in E
3 and let F

denote the set of its faces. Let S be the abstract simplicial complex on the vertex set C
generated by the 2D members of bd Q (for the definition of bd Q, see the paragraph
preceding Lemma 5.3), which are, according to Lemma 5.3, certain triples of points
in C. Both S and the nerve N (F) of F are 2D abstract simplicial complexes. For the
definition of an abstract simplicial complex and its geometric realization, see [9].

We claim that they both have the following “edge property”: any edge is contained
in a 2D simplex. Indeed, S has this property by definition, as it is a simplicial complex
generated by a family of 2D simplices. On the other hand, N (F) also has this property,
because P is simple and standard, and hence any edge of P has a vertex as an endpoint
which is a point of intersection of three faces of P.

Consider the mapping φ : ci �→ Fi that maps each center point in C to the
corresponding face of P. This is a bijection between the 0-dimensional members
of S and the 0-dimensional members of N (F). By Lemma 5.3, the 2D members
of S correspond via φ to the 2D members of N (F). By the “edge property” in the
previous paragraph, it follows that φ is an isomorphism of the two abstract simplicial
complexes, S and N (F).

By Theorem 4.2, N (F) is isomorphic to the face-lattice of another standard ball-
polyhedron: P∗. As P∗ is a convex body in E

3 (i.e., a compact convex set with
non-empty interior in E

3), the union of its faces is homeomorphic to the 2-sphere.
Thus, S as an abstract simplicial complex is homeomorphic to the 2-sphere. On the
other hand, bd Q is a geometric realization of S. Thus, we have obtained that bd Q is a
geometric simplicial complex which is homeomorphic to the 2-sphere. It follows that
Q is homeomorphic to the 3-ball. So, we have that Q is a polyhedron (the point being:
it is topologically nice, that is, its boundary is a surface, as required by the definition
of a polyhedron in Sect. 4).

Clearly, Q is a weakly convex polyhedron as C is in convex position. Further-
more, Q is weakly co-decomposable, as Dt is a sub-polyhedral complex of D (by
Lemma 5.2), which is a family of convex polyhedra the union of which is [Q] = [C] .

So far, we have proved that Q is a weakly co-decomposable polyhedron with
triangular faces in E

3. By Theorem 4.1, Q is infinitesimally rigid. As bd Q itself is
a geometric simplicial complex, its edge graph is rigid because infinitesimal rigidity
implies rigidity (for more details on this, see [5]). Finally, we recall that the edges of
the polyhedron Q correspond to the edges of the ball-polyhedron P, and the lengths of

123



Discrete Comput Geom (2013) 49:189–199 199

the edges of Q determine (via a one-to-one mapping) the corresponding inner dihedral
angles of P. It follows that P is locally rigid with respect to its inner dihedral angles.
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