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Abstract. A group G is called morphic if every endomorphism α : G → G for which Gα
is normal in G satisfies G/Gα ∼= ker(α). This concept for modules was first investigated by
G. Ehrlich in 1976. Since then the concept has been extensively studied in module and ring
theory. A recent paper of Li, Nicholson and Zan investigated the idea in the category of groups.
A characterization for a finite nilpotent group to be morphic was obtained, and some results
about when a small p-group is morphic were given. In this paper, we continue the investigation
of the general finite morphic p-groups. Necessary and suffi cient conditions for a morphic p-group
of order pn(n > 3) to be abelian are given. Our main results show that if G is a morphic p-group
of order pn with n > 3 such that either d(G) = 2 or |G′ | < p3, then G is abelian, where d(G) is
the minimal number of generators of G. As consequences of our main results we show that any
morphic p-groups of order p4, p5 and p6 are abelian.

1. Introduction and Preliminaries

Call a group G morphic if every endomomorphism α of G for which Gα is normal in G satisfies
G/Gα ∼= ker(α). This condition for modules was introduced in 1976 by Gertrude Ehrlich [4] to
characterize when the endomorphism ring of a module is unit regular. A group-theoretic version
of Ehrlich’s theorem was given in [6]. The conditionM/Mα ∼= ker(α) was studied in the context
of rings in [8], for group rings in [3] and for modules in [9]. In the recent paper [7] this condition
was studied in the category of groups. One of the interesting results proved in that paper is
regarding morphic nilpotent groups. It was shown that a finite nilpotent group is morphic if
and only if its Sylow subgroups are morphic. This motivated the study of morphic p-groups and
the characterizations of morphic groups of order p3 and p4 were given. In the present paper, we
continue the investigation of finite morphic p-groups.
If H is a subgroup of a group G, we write H C G to indicate that H is a normal subgroup of

G, we write Z(G) for the centre of G, and we write G
′
for the commutator (or derived) subgroup

of G. We recall some basic properties of morphic groups which will be used in the sequel.

Lemma 1.1. [7, Lemma 5] The following are equivalent for a group G :
(1) G is morphic.
(2) If K C G is such that G/K ∼= N C G, then G/N ∼= K.
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Lemma 1.2. [7, Lemma 17] The following are equivalent for a morphic group G :
(1) Every normal subgroup of G is isomorphic to an image of G.
(2) Every image of G is isomorphic to a normal subgroup of G.

A groupG is called strongly morphic if it is morphic and the conditions in the above lemma are
satisfied. Note that not every morphic group is strongly morphic. For example, the alternating
group A4 is morphic, but not strongly morphic.

Lemma 1.3. [7, Theorem 37 (1)] Let G be a finite morphic group of order pn. Then all subgroups
and images of G of order pn−1 are isomorphic.

The morphic groups of order p3 are well understood.

Lemma 1.4. [7, Propsition 39] Let G be a group of order p3. Then G is morphic if and only
if either G is cyclic, or elementary abelian, or nonabelain with exp(G) = p. Moreover, in this
case, we have:
If p = 2, then G is cyclic or elementary abelian.
If p > 2, then G is either cyclic, or elementary abelian, or
G = 〈a, b, c | ap = bp = cp = 1, [a, b] = c, ac = ca, bc = cb〉.

The Frattini subgroup of a finite group G, denoted by Φ(G), is defined to be the intersection
of all the maximal subgroups of G. Denote by d(G) the minimal number of generators of G.
For a finite p-group G, Φ(G) = G

′
Gp where Gp = 〈gp|g ∈ G〉, and Φ(G) is the smallest normal

subgroup of G such that the factor group G/Φ(G) is an elementary abelian p-group, so d(G) is
equal to dim(G/Φ(G)) = rank(G/Φ(G)).

In Section 2, we study general finite morphic p-groups. It is first shown that any finite morphic
p-group is strongly morphic. Necessary and suffi cient conditions for a morphic p-group of order
pn(n > 3) to be abelian are also given. Our main results are Theorems 2.10 and 2.13, which show
that if G is a morphic p-group of order pn with n > 3 such that either d(G) = 2 or |G′ | < p3,
then G is abelian. In section 3, the main results in the above section are applied to show that
any morphic p-groups of order p4, p5 and p6 are abelian.

2. The Classification of morphic p-Groups

In this section, we investigate finite morphic p-groups of order pn where p is a prime. We
begin with several preliminary results.

Proposition 2.1. If G is a morphic p-group of order pn, then G is strongly morphic. Moreover,
each subgroup of G is isomorphic to a normal subgroup of G.

Proof. We first show that each subgroup of G is an image of G. Assume that for each subgroup
N of order pk+1, N is an image. Let H be a subgroup of order pk. Then there exists a maximal
normal subgroup m containing H. Note that G/m ∼= 〈z〉 where z is any central element of order
p. Thus m ∼= G/〈z〉 by Lemma 1.1 as G is morphic. So there exists a subgroup N of G with
|N | = pk+1 such that H ∼= N/〈z〉. Since N is an image of G, the above implies that H is an
image, so G is strongly morphic. Note that in such a group G, every image is isomorphic to a
normal subgroup by Lemma 1.2, so each subgroup of G is isomorphic to a normal subgroup of
G as desired. �
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Lemma 2.2. Let G be a finite morphic p-group with d(G) = k. Then for every subgroup N of
G, d(N) ≤ k. Moreover, if Φ(G) 6= 1, then d(m) = k for every maximal subgroup m of G.

Proof. It was shown in the proof of Proposition 2.1 that every subgroup N of G is an image
of G, so d(N) ≤ d(G). If Φ(G) 6= 1, then there exists a central element z of order p of G
such that z ∈ Φ(G). Thus G/Φ(G) ∼= (G/〈z〉)/(Φ(G)/〈z〉). By Lemma 1.3, all the maximal
subgroups m of G are isomorphic and m ∼= G/〈z〉. Therefore, d(G) = d(G/Φ(G)) ≤ d(m),
implying d(G) = d(m) as desired. �
Lemma 2.3. [12, Lemma 2.2] Let G be a finite nonabelian p-group. Then the following state-
ments are equivalent.
(1) All the maximal subgroups of G are abelian;
(2) d(G) = 2 and |G′ | = p;
(3) d(G) = 2 and Z(G) = Φ(G).

Proposition 2.4. Let G be a morphic p-group of order pn with n > 3. Then the following
statements are equivalent:
(1) |G′ | < p2;
(2) All the maximal subgroups of G are abelian;
(3) G has an abelian maximal subgroup;
(4) G is abelian.

Proof. (1) ⇒ (2). If G
′

= 1, then G is abelian, so the result holds. If |G′ | = p and M is any
maximal subgroup of G, then G/M ∼= G

′
, so M ∼= G/G

′
is abelian.

(2) ⇒ (3) is obvious.
(3) ⇒ (4). Since G has an abelian maximal subgroup and all maximal subgroups of G are
isomorphic, we conclude that all maximal subgroups of G are abelian. If Z(G) contains two
distinct subgroups 〈z〉 and 〈t〉 of order p, then since G/〈z〉 ∼= M ∼= G/〈t〉 and M is abelian, we
conclude that G

′ ⊆ 〈z〉
⋂
〈t〉 = 1. Thus G is abelian. If Z(G) contains exactly one subgroup of

order p, then Z(G) is cyclic. If G is non-abelian, by Lemma 2.3, d(G) = 2 and Φ(G) = Z(G),
so Z(G) = 〈z〉 has order pn−2. Let G = 〈a, b〉. Then since G/Z(G) ∼= Cp × Cp, we have
ap, bp ∈ Φ(G) = Z(G). We claim that

ap, bp ∈ 〈zp〉 (∗).
For otherwise, we may assume that ap 6∈ 〈zp〉. Then |ap| = |z| = pn−2 and thus |a| = pn−1.
Therefore, G contains a cyclic maximal subgroup, so by [7, Proposition 38] G is cyclic, a con-
tradiction. Since |G′ | ≤ p, G′ ⊆ 〈zp〉, so G/〈zp〉 is abelian of order p3 with exp(G/〈zp〉) = p and
thus G/〈zp〉 ∼= Cp × Cp × Cp, contradicting d(G/〈zp〉) ≤ 2.
(4) ⇒ (1) is obvious. �
Lemma 2.5. Let G be a finite morphic p-group. Then G has exactly one subgroup of order p if
and only if G is cyclic.

Proof. Suppose that G has exactly one subgroup of order p. By [10, 5.3.6], G is cyclic or G is
a generalized quaternion group. It follows from [7, Example 16] that no generalized quaternion
group is morphic, so G is cyclic. The converse is clear. �

Lemma 2.6. [1, Theorem 4] Let G be a p-group. If both G and G
′
can be generated by two

elements, then G
′
is abelian.
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Lemma 2.7. Let G be a morphic p-group of order pn with d(G) = 2 and |G′ | = pk. Then every
subgroup of order pn−k is abelian.

Proof. Let K be a subgroup of order pn−k. Then there exist subgroups K0,K1, ...,Kk = G
such that K = K0 ⊂ K1 ⊂ · · · ⊂ Kk = G. If K is not abelian, then Kj is not abelian for
0 ≤ j ≤ k. By Lemma 2.2 d(Kj) = 2, for all 0 ≤ j ≤ k. It follows from [13, Lemma 2.8] that
|K ′0| < |K ′1| < · · · < |K ′k| = pk, so K ′ = 1, a contradiction. Thus K is abelian and we are
done. �

A group G is metacyclic if it has a cyclic normal subgroup K such that G/K is cyclic.

Lemma 2.8. Let G be a metacyclic morphic p-group of order pn with n > 3 and d(G) = 2.
Then G is abelian.

Proof. We first assume that |G′ | ≥ p2. Since G is metacyclic, G = 〈a, b〉 where 〈a〉 is a cyclic
normal subgroup of G and b ∈ G. Since G/〈a〉 = 〈b〈a〉〉 = 〈b̄〉 is abelian, G′ ⊆ 〈a〉, and so G′

is
cyclic. Let |G′ | = pk. We claim that 2k ≤ n. Since |b̄| ≤ |b|, G has a cyclic subgroup of order
|b̄|. By Proposition 2.1, G has a normal subgroup 〈c〉 of order |b̄|. Since G/〈a〉 = 〈b̄〉 ∼= 〈c〉,
G/〈c〉 ∼= 〈a〉 as G is morphic. Thus G

′ ⊆ 〈c〉 and so |G′ | ≤ |〈c〉| = |b̄|. Therefore, pk = |G′ | ≤
min{|a|, |c|}, so 2k ≤ n as |a||c| = pn. If G has exactly one subgroup of order p, then by Lemma
2.5 G is cyclic, a contradiction. Thus G must have a subgroup N which is isomorphic to Cp×Cp.
By Proposition 2.1 we may assume that N is normal. Since G/N is also a p-group, G has a
normal subgroup K of order pk such that N ⊆ K. By Proposition 2.1 G is strongly morphic,
so K ∼= G/M where M is a normal subgroup of G. Therefore, G/K ∼= M . Since |K| = pk,
|M | = pn−k. It follows from Lemma 2.7 that every subgroup of order pn−k is abelian and so is
M . Therefore, G

′
= K, a contradiction as G

′
is cyclic. Thus we must have |G′ | < p2. It follows

from Proposition 2.4 that G is abelian and we are done. �

Proposition 2.9. Let G be a finite morphic p-group. Then the following hold:
(1) exp(G/G

′
) = exp(G).

(2) d(G/G
′
) = d(G).

(3) If G is nonabelian, then m/m
′ ∼= G/G

′
for every maximal subgroup m of G.

Proof. (1) Suppose that exp(G) = pk. Then there exists a cyclic subgroup of order pk, so
by Proposition 2.1, we conclude that there exists a cyclic normal subgroup 〈b〉 of order pk.
Since every subgroup is an image (by Proposition 2.1), there exists a normal subgroup N such
that G/N ∼= 〈b〉. Thus G′ ⊆ N and exp(G) = exp(G/N). Since (G/G

′
)/(N/G

′
) ∼= G/N ,

exp(G/G
′
) ≥ exp(G/N) = exp(G). Therefore exp(G) = exp(G/G

′
).

(2) Clearly d(G/G
′
) ≤ d(G). SinceG/Φ(G) ∼= (G/G

′
)/(Φ(G)/G

′
), we conclude that d(G/G

′
) ≥

d(G/Φ(G)) = d(G), so d(G/G
′
) = d(G).

(3) Let z ∈ G′∩Z(G) be an element of order p. For any maximal subgroup m of G, by Lemma
1.3, m ∼= G/〈z〉. Clearly, (G/〈z〉)′ = G

′
/〈z〉. So we conclude that m/m′ ∼= (G/〈z〉)/(G′

/〈z〉) ∼=
G/G

′
. �

Now we are ready to prove our first main result.

Theorem 2.10. Let G be a morphic p-group of order pn (n > 3) and d(G) = 2. Then G is
abelian.
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Proof. Suppose on the contrary that G is nonabelian. Then by Proposition 2.4 we have |G′| ≥ p2.
We next divide the proof into the following two cases.
Case 1: |G′| = p2. By Lemma 2.5 G has at least two distinct subgroups of order p. As

before, we conclude that G has a normal subgroup which is isomorphic to Cp × Cp. Since G
has an abelian subgroup of order p3 (every group of order p4 has an abelian subgroup of order
p3 by [11, Proposition 6.5.1]) and by Lemma 2.2 every subgroup of G can be generated by two
elements, we conclude that G has a subgroup which is isomorphic to Cp2 . By Proposition 2.1,
there exist normal subgroups H and K such that H ∼= Cp×Cp and K ∼= Cp2 . Since G is strongly
morphic, G/H and G/K are isomorphic to normal subgroups of order pn−2 that are abelian by
Lemma 2.7. Therefore, G

′ ⊆ H
⋂
K, a contradiction.

Case 2: |G′ | ≥ p3. Then n ≥ 5. We first show that G
′

= Φ(G). If n = 5, then since d(G) = 2,
we have |G′ | = p3 = |Φ(G)| and thus G′

= Φ(G). So we may assume that n ≥ 6. By Lemma 2.2
every subgroup of G can be generated by two elements, so it follows from [2, Theorem 4.2, and
Theorem 5.1] that G is either metacyclic or G

′
= Φ(G). If G is metacyclic, then G is abelian

by Lemma 2.8, a contradiction. Hence, G
′

= Φ(G). Note that |G′ | = |Φ(G)| = pn−2. Since G
′

is an image, G
′ ∼= G/N for some normal subgroup N . Since G and G

′
can be generated two

elements, by Lemma 2.6 G
′
is abelian. So we have G

′ ⊆ N . But |G′ | = pn−2 and |N | = p2, a
contradiction.
In both cases, we have found contradictions. Thus G must be abelian. �
A group G is called the semidirect product of two subgroups A and K, denoted by G = AoK,

if A is a normal subgroup such that G = AK and A
⋂
K = 1.

Proposition 2.11. Let G be a morphic p-group of order pn. Then the following hold:
(1) G = AoK where A is a normal subgroup, K ∼= Cpk is a subgroup and p

k = exp(G).
(2) If every cyclic subgroup of order pk is normal, then G is abelian.

Proof. (1) Let 〈a〉 be a cyclic subgroup of G of order pk such that pk = exp(G). By Proposition
2.1 every subgroup is an image, so we obtain that G/A ∼= 〈a〉 for some normal subgroup A of G.
Thus there exists an element b ∈ G such that G/A = 〈bA〉 and |〈bA〉| = pk. We have |b| = pk

because exp(G) = pk, so 〈b〉 ∩ A = 1. Thus G = Ao 〈b〉 and so (1) holds with K = 〈b〉.
(2) If every cyclic subgroup of order pk is normal, then by (1) we have G = A × K with

K = 〈b〉 and |b| = pk. To show that G is abelian, it suffi ces to show A is abelian. Let a be any
element of A. Then ab has order pk as b is a central element. Let H = 〈ab〉. Then G = AoH.
Since H is normal, G = A×H. We conclude that ab is central, hence a is central, implying that
A is a central subgroup. Therefore, G is abelian and we are done. �
Proposition 2.12. Let G be a morphic p-group of order pn (n > 3) and exp(G) = pk < pn.
Then the following hold:
(1) If k > 1, then every subgroup of G of order pk+1 is abelian if and only if G is abelian.
(2) If k = 1, then every subgroup of G of order p3 is abelian if and only if G is elementary
abelian.

Proof. Clearly in both cases we need only show the forward directions.
(1) Assume that every subgroup of G of order pk+1 is abelian. We may also assume that

n ≥ k + 2. Let N be a subgroup of G such that |N | = pr ≥ pk+2. If every subgroup of G
of order pr−1 is abelian, then we show that N is abelian. Assume to the contrary that N is
non-abelian. By Lemma 2.3, we have d(N) = 2, |N ′ | = p, and Z(N) = Φ(N). If Z(N) contains
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two distinct subgroups 〈z〉 and 〈t〉 of order p, then N/〈z〉, as an image of G, is isomorphic to
a subgroup of G of order pr−1 because G is strongly morphic (Proposition 2.1). Since every
subgroup of G of order pr−1 is abelian, we have N

′ ⊆ 〈z〉. Similarly, we have N ′ ⊆ 〈t〉. Thus
N

′
= 1, a contradiction as |N ′ | = p. Hence, Z(N) = 〈z〉 is cyclic. Let N = 〈a, b〉. Since

[a, b] = g ∈ N
′
, |〈g〉| = p. Thus ap, bp ∈ 〈zp〉. For otherwise, as in the proof of Proposition

2.4, N must contain an element of order pr−1 > pk, a contradiction to exp(G) = pk. Since
exp(N/〈zp〉) = p, |N | ≤ pr−1, a contradiction. Therefore, N must be abelian. Now, since every
subgroup of G of order pk+1 is abelian, by what we just proved every subgroup of G of order
pk+2 is abelian. By repeating this argument, we conclude that G is abelian as desired.
(2) Assume that N is a subgroup of G of order pr (r > 3) and every subgroup of G of order

pr−1 is abelian. We claim that N must be abelian. For otherwise, if N is non-abelain, as
above, we have d(N) = 2 and Z(N) = φ(N) and |N ′ | = p. Since exp(N) = p, N

′
= Φ(N),

so |N | = |Φ(N)|p2 = p3, a contradiction. Since every subgroup of G of order p3 is abelian, by
what we just proved, we have that every subgroup of G of order p4 is abelian. By repeating this
argument, we conclude that G is abelian. Since exp(G) = p, G is elementary abelian. �

We now prove our second main result.

Theorem 2.13. Let G be a morphic p-group of order pn with n > 3. If |G′ | < p3, then G is
abelian.

Proof. Assume to the contrary that G is non-abelian. By Proposition 2.4, |G′ | = p2. By
Proposition 2.9, we have G/G

′ ∼= m/m
′
for each maximal subgroup m of G, so |m′ | = p. By [13,

Theorem 3.1], we have either d(G) = 2 or d(G) = 3 and G
′ ⊆ Z(G) with G

′ ∼= Cp × Cp. If the
former is true, i.e. d(G) = 2, then G is abelian by Theorem 2.10, a contradiction. Thus we have
the latter case.
Next, we show that Gp ⊆ Z(G). For any x ∈ Gp, y ∈ G, x = ap for some a ∈ G. Since

y−1ay = az where z ∈ G
′ ⊆ Z(G) and zp = 1, we have y−1xy = y−1apy = ap = x, so x

is a central element and thus Gp ⊆ Z(G). Now Φ(G) = G
′
Gp ⊆ Z(G). By [5, Lemma 1]

Z(G) ⊆ Φ(G), so Z(G) = Φ(G). If d(Z(G)) = 3, then there exists a subgroup

H = 〈z1〉 × 〈z2〉 × 〈z3〉 of Z(G)

such that |〈zi〉| = p, 1 ≤ i ≤ 3. Since |m′ | = p and m ∼= G/〈zi〉 for each i, we conclude that
|G′〈zi〉/〈zi〉| = p. This together with |G′ | = p2 implies that 〈zi〉 ⊆ G

′
, so 〈z1〉× 〈z2〉× 〈z3〉 ⊆ G

′
,

a contradiction to d(G
′
) = 2. Thus we must have d(Z(G)) = 2.

Let Z(G) = 〈z〉 × 〈x〉 such that |〈z〉| = pk ≥ |〈x〉| = ps. We now show that exp(G) = pk.
Since Z(G) is an image, there exists a normal subgroup N of G such that G/N ∼= Z(G). Since
G is morphic, we have N ∼= G/Z(G) = G/Φ(G) ∼= Cp × Cp × Cp. For any subgroup H of G
containing G

′
, denote H/G

′
by H. Since G/N ∼= (G/G

′
)/(N/G

′
) = G/N ∼= 〈z〉 × 〈x〉, there

exist a, b ∈ G/G
′
such that G/N = 〈aN〉 × 〈bN〉 where |aN | = pk and |bN | = ps. Thus

G = 〈a〉〈b〉N . If 〈a〉〈b〉 ∩ N 6= 1̄, then since |N | = p, N ⊆ 〈a〉〈b〉. Thus G = 〈a〉〈b〉 and
so d(G/G

′
) = d(G) = 2. However, by Proposition 2.9, d(G/G

′
) = d(G) = 3, so we have a

contradiction. Thus 〈a〉〈b〉∩N = 1̄, so G = 〈a〉〈b〉×N and |〈a〉〈b〉| = pk+s. Since 〈a〉〈b〉∩N = 1̄,
〈a〉 ∩ N = 1̄ and 〈b〉 ∩ N = 1̄. Thus |〈a〉| = |〈aN〉| = pk and |〈b〉| = |〈bN〉| = ps. Since
|〈a〉〈b〉| = pk+s, we have 〈a〉 ∩ 〈b〉 = 1̄. Thus G = 〈a〉 × 〈b〉 ×N ∼= Cpk × Cps × Cp. Since k ≥ s

and exp(G/G
′
) = exp(G) (by Proposition 2.9), we have exp(G) = pk = exp(Φ(G)).
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Finally, we divide our proof into two cases according to whether k = 1 or not.
Case 1: k = 1. Then |G| = p5 because |Φ(G)| = |G′ | = p2 and d(G) = 3. Let H be a

subgroup of G of order p3. By Proposition 2.1 H ∼= K where K is a normal subgroup of G.
Since K is an image, there exists a normal subgroup N of order p2 such that G/N ∼= K. Thus
N ∼= G/K as G is morphic. Since exp(G) = p, N ∼= Cp × Cp ∼= G

′
. Note that G/K ∼= N ∼= G

′
.

Thus K ∼= G/G
′
is abelian and so is H. Therefore, every subgroup of G of order p3 is abelian,

so it follows from Proposition 2.12 that G is abelian, a contradiction.
Case 2: k > 1. Since exp(G) = pk and Gp ⊆ Φ(G) = Z(G), we have exp(Gp) = pk−1 ≥ p.

This together with exp(G
′
) = p shows that exp(Φ(G)) < pk, a contradiction to exp(Φ(G)) = pk.

In all cases, we have found contradictions. Thus G must be abelian and we are done. �

3. Morphic p-Groups of order p4, p5, and p6

We now apply Theorems 2.10 and 2.13 to prove that a morphic p-group of order pn with
4 ≤ n ≤ 6 is abelian. The following result was first proved in [7] by using [7, Theorem 37 (2)].
However, the proof for [7, Theorem 37 (2)] is incomplete. Here we give a short proof.

Proposition 3.1. [7, Proposition 40] Let G be a morphic p-group of order p4. Then G is
abelian.

Proof. Since |G′ | < p3, it follows from Theorem 2.13 that G is abelian. �
Theorem 3.2. Let G be a morphic p-group of order p5. Then G is abelian.

Proof. If d(G) < 3, by Theorem 2.10, G is abelian. If d(G) ≥ 3, then |Φ(G)| < 3 and thus
|G′ | < p3. By Theorem 2.13, G is abelian. �
Theorem 3.3. Let G be a morphic p-group of order p6. Then G is abelian.

Proof. Assume to the contrary that G is non-abelian. In term of Theorems 2.10 and 2.13, we
may assume that d(G) ≥ 3 and |G′ | ≥ p3. Since |G| = p6, we have d(G) = 3 and |G′ | = p3, so
G
′

= Φ(G). By Proposition 2.9, exp(G) = exp(G/G
′
) = p. We first show that all subgroups of

G of order p4 are isomorphic. Let H1 and H2 be any two normal subgroups of G of order p4.
By Proposition 2.1, H1 and H2 are images of G. So there exist normal subgroups K1 and K2

of G of order p2 such that G/K1
∼= H1 and G/K2

∼= H2. Thus G/H1 ∼= K1 and G/H2 ∼= K2.
Since exp(G) = p, we have K1

∼= K2
∼= Cp ×Cp. By [7, Theorem 19] H1 ∼= H2 (as G is strongly

morphic). Note that it follows from Proposition 2.1 that every subgroup of G is isomorphic to a
normal subgroup of G. Thus all subgroups of G of order p4 are isomorphic. We remark that no
subgroup of G of order p4 is abelian. For otherwise, each such subgroup is abelian, so is every
subgroup of G of order p3. It follows from Proposition 2.12(2) that G is abelian, a contradiction.
We next show that if H is any subgroup of G of order p4, then d(H) = 3 and |H ′ | = p. Since

G/Φ(G) ∼= Cp × Cp × Cp and G is strongly morphic, G has a normal subgroup N such that
N ∼= Cp ×Cp ×Cp. Note that N ⊆ m and G/〈z〉 ∼= m where m is a maximal subgroup of G and
z is a central element of G of order p. So N ∼= H0/〈z〉 for some subgroup H0 of G of order p4.
Thus 3 = d(N) ≤ d(H0) ≤ d(G) = 3. Since all subgroups H of G of order p4 are isomorphic, we
have d(H) = 3 and |H ′ | = p.
Now, by Proposition 2.9, m/m

′ ∼= G/G
′
for every maximal subgroup m of G. So we have

|m′ | = p2. For every maximal subgroup H of m, H
′ C m. Since |H ′ | = p (as |H| = p4), H

′ ⊆
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Z(m). Given elements x, y ∈ m, the fact that d(m) = 3 shows that x, y ∈ H for some maximal
subgroup H of m. Hence their commutator [x, y] ∈ H ′ ⊆ Z(m) and thus m

′ ≤ Z(m). Since all
the maximal subgroups of m are isomorphic, [5, Lemma 1] shows that Z(m) ⊆ Φ(m) = m

′
(as

exp(m) = p). Thus m
′

= Z(m) and |Z(m)| = p2. Since Z(m) = Φ(m) = m
′ ⊆ Φ(G) ⊆ m, we have

Z(m) ⊆ Z(Φ(G)). Since p2 = |Z(m)| ≤ |Z(Φ(G))| and |Φ(G)| = p3, we have Φ(G)/Z(Φ(G))

is cyclic, so Φ(G)(= G
′
) is abelian. Let m1 and m2 be any two distinct maximal subgroups of

G. If Z(m1) 6= Z(m2), then since Z(m1) ⊆ Φ(G) and Z(m2) ⊆ Φ(G), Z(m1)Z(m2) = Φ(G), so
|Z(m1)Z(m2)| = p3. Since Z(m1)Z(m2) = Φ(G) ≤ m1 ∩ m2, we conclude that Z(m1)Z(m2) ⊆
Z(m1 ∩m2), so

|Z(m1 ∩m2)| ≥ p3 (∗).
Note that |m1 ∩m2| = |m1||m2|/|m1m2| = p4. By (∗), m1 ∩m2/Z(m1 ∩m2) is cyclic, so m1 ∩m2
is an abelian subgroup of order p4, contradicting our early remark. Next, we assume that
Z(m1) = Z(m2) (i.e. m1

′
= m2

′
) for any two distinct maximal subgroups m1 and m2 of G.

Then every maximal subgroup of G/m1
′
is of the form m/m1

′
= m/m

′
which is abelian. Since

|(G/m′
1)

′ | = |G′
/m

′
1| = p, G/m

′
1 is a minimal non-abelian group. By Lemma 2.3, d(G/m

′
1) = 2.

Since G is strongly morphic and |G/m′
1| = p4, G/m

′
1
∼= H where H is a subgroup of order p4.

Thus d(H) = d(G/m
′
1) = 2. However, we have shown that d(H) = 3, a contradiction. Thus G

must be abelian and we are done. �
The question of whether G × G is morphic given that G is morphic was raised in [7]. The

following example provides a negative answer to this question.

Example 3.4. Let p > 2 be a prime, and let G be a nonabelian group of order p3 with
presentation G = 〈a, b, c | ap = bp = cp = 1, [a, b] = c, ac = ca, bc = cb〉. Then G is morphic, but
G×G is not morphic.

Proof. First, G is morphic by [7, Proposition 39]. Note that G×G is a non-abelian p-group of
order p6. By Theorem 3.3 it is not morphic. �
Much evidence suggests that any morphic p-group of order pn (n > 3) is abelian. We close

this paper by making this a conjecture.

Conjecture 3.5. If G is a morphic group of order pn with n > 3, then G is abelian.

With Lemma 1.4, this completely describes the finite morphic p-groups, as the abelian case
is well known [7, Theorem 14].
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