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THE BROADEST CURVE OF LENGTH 1

J. Schaer

1. .Introduction.

Consider all curves of length 1 in the euclidean plane E.
Congruence establishes an equivalence relation among them. Let
T be the set of all equivalence classes. Leo Moser raised the
question about a set ACE with as small an area as possible such
that for all € € t there exists a ¢ € C with ¢ ¢ 4, i.e. 4 shall
contain at least one curve of every class. Of course 4 is de-
termined at most up to congruence,

It was conjectured that in analogy to the Kakeya problem
maybe the area could be made arbitrarily small. Besicovitch
and Rado have proved [1], that a set may be constructed which
has measure 0 and contains circles of all radii between 0 and
1
o2q ° Say.

Here we shall solve another simplified question: What is
the minimum width of an (infinitely long) strip S€E such that
for all ¢ € 1 there exists ¢ € C with ¢ €S? 1If w(e,$) denotes
the width of the curve ¢ in a direction given by ¢ (i.e. the dis-
tance between two supporting lines to ¢ that are perpendicular
to ¢), let us call the breadth of ¢, bc = min w(e,$). Our prob-
lem is to find bo = sup bc and if possible, a curve ¢ for which

e
b =b .
e )
In 2 we prove a theorem which we shall need later but
which is of interest in itself. We then assume that there is a

broadest curve ¢ and deduce certain properties it must have.



In 3 we shall show that ¢ does not cross itself, in 4 that it must

be a convex arc. The proofs of these intuitively obvious facts
seem to bevrather long, but so far I have been unable to find a
more direct argument.

Finally, in 5 and 6 we show that ¢ does exist and is unique.

Strictly speaking, a plane curve ¢ is a map f: 7 >~ F from
the unit interval of real numbers into the euclidean plane Z.
For convenience we shall however call f(I) a curve ¢ and f a
parametrization of ¢. In the following we assume f to be con-
tinuous and f(I) rectifiable. Quite often we shall have to
consider reparametrizations, e.g. changing the orientation of a
loop or linking up parts of the curve in a different order.

The method by which we show that a certain type of curve ¢
does not have maximal breadth is to show that there is a shorter

curve ¢' such that

e'de
where ¢ denotes the convex hull of e¢. For (%) implies that
b,z bc’ and then ¢' may be dilated to length 1 to produce a

(4]

curve whose breadth exceeds bc'

Z._ .Theorem.
Let v be a closed continuous and rectifiable curve in the
Euclidean plane E, and 3v the boundary of its convex hull . 37

is also a closed continuous and rectifiable curve. Then

(*)



1) = L(w),

where 1(v) denotes the length of v, and 1(v) = 1(9D) only if

v = 3D,

Proof: Although it is claimed to be well known [2] let us prove

the result first for polygons. 93V is then also a polygon, and
we shall show that the unique shortest closed curve containing
the set V of vertices of 30 is 37 itself, If K denotes the set
of all polygons having [Vl vertices and V as a set of vertices,
then for any closed curve u ¢ X, but VCu, one can find a poly-
gon p ¢ K which is shorter. {Let u = f(I), where f: I +~ E, and
f(0) = f(1). Then there exists IVl values tl < tz < ve. < thl
such that f(ti) € V and f(ti) # f(tj) for 7 # j. Let p be the
polygon which comnects f(t,), f(£,), ..., f(th‘), f(t,) in this
order}. Since X is finite, the existence of a shortest curve is
evident. If k € K, but k # 9k = 90, then k passes through V in
a different order than 3V, and therefore has chords. It is easy
to see that in this case some chords must intersect, and there-
fore there exists a shorter polygon in X than k. 3v is the only
polygon of K which has no shorter one. Hence it is the shortest
and in fact every other closed curve containing V is (strictly)
longer.

If now v is an arbitrary closed continuous curve of length

1, say, we can approximate it by polygons Pn whose vertices are,

along v, 2—n apart. From the preceding we know that

’



Z(aﬁn) < Z(Pn), and it is clear that lim Z(Pn) = L(v). 1In order

N-ro
to establish the inequality it is therefore sufficient to prove

that lim Z(Bpn) = 1(3v). Obviously PnC ¥; but also the Blaschke

Y ad

n-1
» since for any point M € v there exists

distance S(ﬁn,ﬁn) < 2"
a point (actually a vertex) ¥V ¢ Pn such that the distance

dM,N) < Z—n_l; and if X € v, then X is a convex linear combina-
tion of points Ml’Mz’ seey €V, and if Y is the same linear com-
bination of the corresponding points NI’NZ’ ceey E Pn’ then also

dx,y)y < 2771,

Thus ﬁn + ¥ as n -+ », and also Bﬁn ~+ 3V, and
hence Z(Bﬁn) -+ 1(30), q.e.d.

If 3 # v, then, for some n,aﬁn # Pn and hence Z(aﬁn) < Z(Pn).
We shall show that,for m > n,Z(Ph) - Z(a?h) 2 Z(Pn) - Z(aﬁn) and
so prove the second part of the theorem. Let Pé denote a sequence
of approximating polygons containing the sequence Pk as a sub-
sequence: Pk = P;k’ and obtained by introducing one new vertex

at a time. Let § be the new vertex of P introduced between

k+1?
the vertices P,R of Pé. If @ ¢ Pi, the result is obvious. If
however @ ¢ ?L, i.e. @ is a vertex of aﬁi+1, denote by S,T the

intersections of the segments PQ, @R with Bﬁi, and by A,B the

adjacent vertices of a?i+l. See fig. 1.

Figure 1,



Now 1(3P;.,) - L(3Pp) < d(4,Q) + d(Q,B) - d(4,5) - d(s,T) - d(T,B), and
L(Pl,,) - LR = d(P,Q) + d(Q,R) - d(P,R). Hence
[0y - 2P DT - [1(R) - LGPY)] > d(P,S) + d(S,Q) + d(Q,T) +
+ d(T,R) - d(P,R) - d(4,Q) - d(Q,B) + d(4,5) + d(5,T) + d(T,B)
= (d4,5) +d(5,Q) - d4,Q)) + (d@Q,T) + d(T,B) - d(Q,B)) +

+ (d(®,5) + d(s,T) + d(T,R) - d(P,R)) : O.

3.__A broadest curve need mot cross itself.
In this section we establish various properties of a broad-

est curve ¢ which may be summarized by the title.

(a) The endpoints E , E of c lie on the boundary dc of the con-
vex hull ¢ of c.

Otherwise they would have a positive distance from the compact
3¢, and ¢ would be the convex hull of a shorter curve c'e c.

(b) The set of points of ¢ in the interior of ¢ ig the union of
open ''line" segments with endpoints on 3é.

Otherwise an arc of ¢ lying in the interior of ¢ with endpoints
P,Q on 3¢ could be replaced by the shorter line segment joining
P and @ without diminishing ¢. Such a segment together with its
endpoints shall be called a chord of c.

(c) The chords of ¢ do not eross each other, i.e. no chord has
points on both sides of another chord (i.e. in both open half-
planes determined by this other chord).

Otherwise the curve would contain a loop, starting and ending at

the point of intersection of the two chords. This point would



be in the interior of ¢. Changing the orientation of the loop,
the two crossing chords might then be replaced by two opposite
sides of the quadrilateral of which they are diagonals, and the
curve thus shortened (cf. (b)).

Note that the chords may still have endpoints in common,
or they may even fully coincide.
(d) We may assume that c does not cross any chord at all, i.e.
there exists a parametrization of ¢ such that if the image of
the parameter interval [p,q] is a chord, then both the images
of [0,p] and [q,1] lie each completely in one of the closed
half-planes determined by the chord (and therefore actually in
opposite ones).

In order to prove this statement we assume there is a chord
u with endpoints P,{. The continuity of f secures that the
images of maximal subintervals of I which are disjoint from u
are each completely on one side of u (i.e. in one of the open
half-planes determined by u). We distinguish between three
different types of such parts: "Ends'" which contain an endpoint
of ¢ lying outside u; "loops" with coinciding endpoints; and
"arcs" connecting P and Q.
(i) First we can rule out '"loops'.
Indeed, if there were a loop v with coinciding endpoints at &,
say, then a suitable parametrization of ¢ would let v immediately
follow u. We shall represent this situation shortly by Pugv@.
The convex hull of this piece of ¢ is bounded by the chord u and

an arc w, both joining P to §. By the theorem of 2 we can con-



clude that Z(u) + L(w) < 1(Puqvq@) + 1(QuP), and hence
Lw) < 1(PuquQ).

An immediate consequence of this result is that the number
of parts of ¢ outside u is finite, since there are at most two
"ends" and the length of any "arc'" is greater than that of u.
_(ii) On each side of u there is at most one "arc'.

Indeed, if there were two arcs v,w connecting P and ¢, then the
convex hull of their union would be bounded by u and an arc v,
By the theorem of section 2 IZ(u) + 1) < L) + L), and hence

the two "arcs" v,w could be replaced by u and v.
(iii) e does not contain two identical (and identically oriented)
chords Pu@ and PvqQ, because there would have to be some "arc"
QwP, forming a loop together with Pvg, say, which could be ruled
out by the method of (1i).

So far, however, we cannot rule out two chords Puf and QuP.
Yet in this case no "arc" can be present (for the same reason),

and there must be an "end'" on each side of u. In this case clearly

¢ does not cross the chord. See fig. 2.

Figure 2.



In the following we can therefore restrict our attention to
the case where a chord occurs (as point-set) only once.
(iv) ¢ must have two "ends" w.r.t. any chord u.

Indeed, if there were no "ends'", then there would have to
be an "arc" on each side of u. Together they would have the same
convex hull as ¢. Linking them up and omitting u altogether, c
could be shortened.

If there were exactly one '"end'", then there would have to be
an "arc'" on the opposite side of u; there might or might not be
an "arc'" on the same side. In both cases the chord could be
omitted after a suitable parametrization, without diminishing
the convex hull of c.

(v) The two "ends'" must lie on opposite sides of u.

If in the contrary the two "ends' were both on the same side
of u, there would have to be an "arc'" on the opposite side. Now
because of (iv) the endpoints P,Q of u must each be endpoints of
an even number of parts of ¢ (including u). Hence, if the two
"ends" would join the chord u one at P and one at @, then there
would have to be also an "arc'" on the same side of u as the "ends'.
In any case we would have two parts cl,cz(either two "ends" or an
"end" and an "arc") of ¢ emerging from P say, to the same side of
u, whereas there is an "arc" v on the opposite side; see fig. 3.
The parametrization may be chosen such that ¢,PvQuPe,. Now there
exists a line 7 through @, intersecting both e, and e,. Let R
and S be the intersection points closest to P along ¢,»c, respec-

tively. Denoting by d(Q,R) the distance between ¢ and R, we may



Figure 3.

assume d(@,R) > d(Q,S). The convex hull of Re,PvQuPe,S is bounded
by an arc RwP and PvQlSLR. By the theorem of section 2

L (RwPvQLS) + d(S,R) < Z(RcvaQuPGZS) + d(S,R). Hence RwPvQlS is
shorter than RcvaQuPczs and has the same convex hull.

(vi) ¢ does not have two "arcs" at any chord.

Else we would again have the situation of fig. 3, which was ruled
out in (v).

Therefore the only remaining possibilities, besides the one
mentioned in (iii) (see fig. 2: "end" PuQuP "end") are: '"end"
PuQ "arc" P "end" and "end" Pu@ "end", shown in fig. 4. In all
these cases there exists a parametrization such that ¢ does not

cross U. This completes the proof of (d).

(a) (b)
Figure 4.
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Conclugion.
With this parametrizatiom the set of chords is ordered in a
natural way. It is actually even a (possibly infinite) sequence,

because by (2dv) every chord separates the two endpoints Eo’ E,

of ¢ and has therefore one endpoint on 3, and the other on 3,5

if 8,,9

1

, denote the two arcs into which 9¢ is divided by Eo and

E The convexity of ¢ together with bo > 0 secures that chords

1*
of a?bitrarily small length can occur only close to Eo and E,,
and since ¢ is of finite length, accumulations of infinitely
many chords can occur only there.

Therefore @ is the union of a possibly infinite sequence of
sets Si with disjoint interiors, in such a way that every Si is
the convex hull of a convex arc c,ce, e, = f[ai’bi]’ i.e.
AiciBi’ and the intersections Si’\Si+1 =e,Nc.,, = f[ai+1’bi]
are the chords. See fig. 5.

Figure 5.
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4. A broadest curve must be a convex arc.

L A e T T T s T

In this section we shall show that the sequences {Si} and
{ci} are finite, in fact that they consist just of one element,

e and ¢ respectively.

Lemma 1: 1If EoeP is an "end" with respect to a chord Pu@, then

d(EosQ) z d(P,Q).

Proof: Otherwise the curve PeEOZQ, where 7 denotes the line
segment between Eo and ¢, would span the same convex hull as

EoePuQ, but would be shorter.

Lemma 2: 1f C; Oy are two consecutive arcs of the sequence

1+1

{ci}, P=A.

i1 and @ = Bi the endpoints of their common chord,

a line of support to ¢ at the endpoints P = A, , and

8,
and i i+1

+1

B. of ¢

141 (unique, if Ai+1 # Bi+1 else arbitrary), and if

i+

o denotes the angle between the chord PQ and 8, (in which

1+1 . 1+1
E1 lies), then e, (and therefore Si) is confined within an angle

ﬂ-Zui+1 at P (see fig. 6, shaded area).
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7+1

Figure 6.

Proof: Let * denote reflection at 8; If e; would contain a

+1°
point outside the mentioned region, then one could find a line
of support 7 to cg, passing through § and intersecting 841 at
a smaller angle than LEIE in the point R, say. If S* denotes
a point of cg on I then a new curve e', identical with ¢ except
for the piece between S = S** and €, which is replaced by the
line segments SR and RQ, would be shorter than ¢ and moreover
e'2a.
i

Corollary: a. <% , and hence (if ¢ has chords) Asey # B

1+1 2 i+1 *

Therefore, if ¢ has chords, then f is one-to-one and curves

of the types of figs. (1) and (3a) with double points are ex-
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cluded; also, every e, has a uniquely defined line of support
si joining its endpoints Ai’Bi' We shall denote the angles of

the chords of ci with si by ui’Bi' (For a first arc e 50y would

1

not be defined; similarly for a last arc).
Lemma 3: The sequence {ci} is finite.

Proof: Assume in the contrary that we have an infinite sequence

f .. L T . i -
of arcs c, et 6% LT Bt’ note that ldil is the angle be

tween si and si The arrangement of the supporting lines si

+1°

implies that the sequence of the Gi is non-increasing:

6i 2 6i+1 [all 7]

Without loss of generality we may assume that the angles ai+1’8i

at a particular chord cirﬂc.

i+ satisfy Gi > 0. 1If Gi > 0, then

because of (1) the angles a increase at least

412 %gr Guge cees
in an arithmetic progression. Since none of them can, by the

I

corollary of Lemma 2, exceed )

, the sequence ui+1, Gy O s eoes

must come to an end. If however 5j = 0 for j ¢ 7, then the sup-

porting lines 8,478, are parallel, and moreover 8;41 T 85, T e
si,=8i g T e The finite length of ¢ then Secures that the
sequence ci+1, ci, ci—l’ .+, ends. In both cases there is there-

fore a first arc ¢, of the infinite sequence {ci}.
If for some j (> %) Gj ¢ 0, then the same argument secures

that the sequence {ci} would also have a last element. The assump-

tion that the sequence is infinite hence implies that Gj > 0 for

(1)
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all j. But then the length of every chord cjlwcj+1 must exceed
d(Az’Bl) cos a,, and so the length of ¢ must be infinite. This

contradiction shows that the sequence {ci} is finite, say,

{cl, cees cn}.

4: If ¢ contain c . . . <1
Lemma e s a chord alr\c$+l, then Oy 3 (and for
the same reason Bi < %9.
Proof: Without loss of generality we may assume Bi < ai+1. Then,
from the proof of lemma 3,ai+1 < G € ve € 0,, and it is suf-
ficient to show a, § %'. If we put ¢ = 1 in fig. 6, we may con-

clude from lemma 1 that y < ﬂ—2u2, where y denotes the angle op-
posite to the first chord eyNnc, in the shaded triangle to which
¢, is confined by lemma 2. But y = ZQZ—BI, and since

0 < Gi € ves € 61 = az—sl, we have 2a2—u2 £y g w—2a2, hence o, €
Lemma 5: Let ¢i denote the direction perpendicular to 8;

(¢ =1,...,m). Then there exists k% such that w(ck,¢k) = w(c,¢k).

Proof: 1If there is no chord the lemma is obvious. If there are
chords we define the angles o (i =2,...,n), Bi (<=1,..., n-1)
and 6i = ui+1-8i (2 =1,..., n-1) as above. If Gj = 0 for some j,
then obviously kX = j and k = j+1 both satisfy the assertion of

the lemma. So we are left to consider the case where Gi #0

(2 =1,...,n-1).

I
3
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J
1f dj > 0 for some j, then ey lies completely in the

=1

triangle bounded by Sj’ Sj+1’ and cj,\c See fig., 7. Sim-

J+1’
n
ilarly, if Gj < 0, then k,/ ey lies completely in that triangle.
l=g+1

J
Therefore if dj > 0 then w l_} s ¢j+1 < w(cj+l’¢j+1)’ and if

6j+1< 0

J+1

Figure 7.

o
#f

n
§,> 0 then w LJ Cqsd . swle, . ,¢.,.). Now if §. > 0 for
J 1=F+1 1’ 4+ J+1’ 7 5+1 7

all 7, then w(c\cn,¢n) < w(cn,¢n), and so w(cn,¢n) = w(c,¢n) 2 bo’
i.e. the lemma holds with % = #. Similarly, if

6i < 0 for all %, then w(cl,¢1) = w(c,¢1). Since the Gi (z=1,...
are monotomically decreasing, the only case left is 6i >0

(2 =1,...,§-1), and Gi <0 (Z=g,...,m1). In this case the

lemma holds with k = j (see fig. 7).
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Proposition 1: The Sequence ¢, ..., ¢ consists of just one
1 n

element, i.e. n = 1: A broadest curve must be a convex arc.

Proof: We shall show that if a curve o has a chord, then the
breadth of ¢, bc < bo. According to lemma 5 there exists k such
that w(c,¢k) = w(ck,¢k).

(@) k =1o0rn. If in the contrary 1 < Xk < n, then ¢;, would

contain two chords, ck—lr\ck and ckf\ck+l. The angleg ak,Bk |
form with s, are, by lemma 4, less than g-. The length 7 of ey

would therefore satisfy

12173 Zw(ck,¢k)/sin %—a

Sl
O

But this would imply bo 5'é§ » whereas we know a curve with

é? (see 5, equation (9)). In the following we shall

breadth >
assume w(cn,¢n) = w(c,¢n).
(b) Here we want first to show that w(cn_l,¢n) # w(cn,¢n), i.e.

that w(cn_lﬁ\cn,¢n) < w(cn,¢n). Indeed, if we assume

w(cn_lf\cn,¢n) = w(cn,¢n), and if we denote the length of cn—l,jcn
by 7, then I sin @ 2 bo. zut by lemma 1 d(An,El) 2 d(An’Bn—l) =1,
and so d(Bn—l’El) 2 27 sin 7? . Then the length of e, would be
o
at least 7 + 27 sin 7? , and thus
a al

l22+2lsin=23b (1+2sin-D/sina 3 L p .

the last inequality is readily proved for 0 < a, € %‘. This

would again imply bo s‘%? .
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(¢) Let R denote a point of ¢ which has maximum distance from g ,
n

By (b) R must lie on e, and by (a) this distance is at least bo.

Here we shall show that the angle o' = ¥ (R’An’El) between the
lines AnR and s, must exceed E- Indeed, if a' ¢ % , then the

length Z(cn) of e, alone would be

L) > dA, ,R) + d(R,E}) > bo[s—i;l—a—,—+ 1] > b (/2+1), and
Z(cn)

therefore bo < < /E:-l, a contradiction to (9).

1+
(d) By (¢) we may assume o' >'% . See fig. 8.

Figure 8.

By (b) the distance of Bn— from g 1is less than bo’ and since R

1

must lie in the region described in lemma 2 we must have

28 < o . Furthermore we know
-1 n

(2)

lr-<cx'<o:, < L
4 n "~ 3
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If n = 2, then by lemmas 1 and 2, v ¢ 71 - Zan; if n > 2 then by

lemma 4, v < %-s T - Zan. So in any case vy = 2an - Bn—l £ T - Zan.
Therefore
%
4@n - T g Bn—l < . (3)

We shall now construct a contradiction by estimating the length

Z(cn_lucn).

(e) For this reason we first find a lower bound for Z(cn_f\cn).

If n = 2, then Eo € cn—l’ and by lemmas 1 and 2

n-1
2

Z(cn—f\cn) 2 d(Eo’An) 2 Zd(An,Bn_l) sin

N\

If n > 2, then by lemma 4, Z(cn—f\cn) d(A,An), where 4 is the

point on sn_1 for which 3 (An’A’Bn—l) But then

R

7
“ n

< - € gﬂ and therefore

= £ _ I
3 wn—’%fA)" B >3 ,[shmesw_

3 n-1 1

B

n-1 .
Z(cn—f\cn) 2 d(A’An) > Zd(An’Bn—l) sin —— also in this case.
B?’I.— 1
2

By (3) sin 2 sin(Zan -5 = - cos Zan. So in any case

2
Z(cn_l\pn) > - 2d(An,Bn_1) cos Zun.

(f) Next we show that d(4 ,B ) > d(B ,T), where T is the
n- n-=1 n—-1

point on the ray An Bn— , reflected at sn-l’ for which

1
i . .
X (T’An’El) = (see fig. 8). 1Indeed, if ¥ (T’An’Bn—l) is denoted

i = _
by € = o, = > then by (3) Bn—l > 4e and ¥ (An’T’Bn—l) = ZBn—l € 2 7¢e > €.

Therefore we have in addition d(An’Bn—l) > d(Bn— ,B).

1
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(8) Now we can estimate

1z Z(cn—1LJcn) = Z(cn_l\pn) +lle)

> - Zd(An’Bn—l) cos Zan + dCAn,Bn_l) + d(Bn—l’R) + d(R,El).
By (f) ZdCAn,Bn_l) > d(An’Bn—l) + d(Bn—l’R) > d(An,R), and so
1> dCAn,R)[— cos 2un + 1] + d(R,El),

and by (c¢)

b

0
sin o'

b

sin ¢
n

0
sin q
n

1> (- cos 2an + 1) + bo > (1 - cos 2an + sin an)

2 - .
(2 sin o, + sin an) bo(l + 2 sin an) > bo(l-FVE).

But this implies again bo <V2-1,
Thus the assumption that 5 > 1, i.e. that ¢ has a chord,

leads to a contradiction, and the proposition is proved.

it i R e R RO uR A

In this section we shall determine the actual shape of a
broadest curve. From 3 we may conclude that there exists a sup-

porting line g passing through both endpoints Eo, E1 of c.

Proposition 2: The two lines of support perpendicular to s pass

through EO and El'

Proof: Suppose Eo Were not on any of these two lines, Starting
at Eo, let 4 be the first point along ¢ on one of these lines,

say a. Then the piece of ¢ between Eo and 4 could be replaced by
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the shortest line segment from A to s (along a), thus shortening

the curve and yet not diminishing its convex hull.

Corollary: d(Eo,El) P bo.

Proposition 3: The width of ¢ perpendicular to s is exactly bo.
Proof: Clearly this width is > bo. If it were > bo, then the

arc of ¢ above the parallel to s at the distance bo could be

replaced by a straight line segment. See fig. 9. This would

Figure 9.

decrease the length; it also would diminish the convex hull, but

the new curve would obviously still have breadth bo.
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Conelusion: ¢ is confined to a rectangle of width d(Eo’El) 2 bo
and height bo. Actually a necessary and sufficient condition
for ¢ to have breadth 2 bo is that it intersects all tangents

of the two quarter-circles ko’ kl with radius bo and centres

EO and E, respectively.

Proposition 4: 1f B denotes a point of ¢ on the common tangent
of ko and kl’ then the piece of ¢ between Eo and B must stay out-
side kl’ and in the same way every point of the piece of ¢ be-

tween B and El must have a distance > bo from Eo.

Proof: 1f the piece of ¢ between Eo and B had a point D inside

k., then the line of support to ¢ at D would be parallel to some

1

tangent of kl' This tangent could not be intersected by ec.

We shall now solve the problem in two more steps. First,
we assume d(Eo’El) 2 bo given and find the shortest curve, having
the properties of the propositions 3 and 4, under this restrictionm.
Its length will still depend on d(Eo’El)' Afterwards we shall
vary d(Eo’El)’ or rather an equivalent parameter, in order to min-
imize the length of the shortest curves of step 1.
23,

The first step is easy: 1If d(Eo’El) 23 o then ¢ consists

of the two equal sides of an isosceles triangle with base d(Eo’El)

2/3
3 b

arcs on ko and kl and pieces of four tangents to these circles,

and height bo. If d(Eo’El) < o then ¢ will consist of two

as shown in fig. 10.
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Figure 10.

It is obvious, that for the second step only the possibility

bO < d(EO,El) < 2§§:bo need be considered, With the angles shown

fig. 10, we have for the length 1 of e:

1= 2bo(tan a + B8 + tan v) 4)
where
2 tan y = — nd B=T g -2 (5)
Y cos o a 2 o Y

The equation %& = 0 reduces to 3 -22-52+3 = 0, where x = 2 sin o.
This cubic has three real solutions, but only one of them lies
between 0 and 2. This solution reads explicitly
1
=2 sin o = 3’(1 + 8 sin €) (6)
with

_1 17
e =73 arcsin 64 (7
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Requiring that for this shortest curve 7 = 1, we find

bo = %-(tan o + B8 + tan y) ,

where a is determined by (6) and (7), and y and B by (5).

Numerically we find

e = 0.89617

x ~ 0.57199
tan o = 0.29846
tan y = 0.,52180
B =~ 0.31888

bo ~ 0.43893

R T L

The curve constructed in 5 is actually the broadest curve
of length 1. Indeed, in 5 we have shown that it is the broadest
convex arc, whereas in 3 and 4 we have shown any other curve has

a smaller breadth.
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