COURSE OUTLINE

1. **Course:** PHYS 543, Quantum Mechanics II - Fall 2021
 Lecture 01: MWF 10:00 - 10:50 in ST 063

<table>
<thead>
<tr>
<th>Instructor</th>
<th>Email</th>
<th>Phone</th>
<th>Office</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr Daniel Oblak</td>
<td>doblak@ucalgary.ca</td>
<td>403 220-7660</td>
<td>SB 313</td>
</tr>
</tbody>
</table>

 In Person Delivery Details:

 There are three nominal class times per week for this course.

 The Wed and Fri class times will be dedicated to lectures while the Mon class times will be dedicated to follow-up lectures, home-work review, problem-solving, independent term project work, office hours, and the midterm according to the posted schedule.

 Although lectures, home-work review, and problem solving will be in an in-person format they will also be made available in an online format to accommodate students who are unable to attend in person. This means that the classes will be conducted in a class-room with in-person attendance possible and in parallel the lecture will be streamed over Zoom and recorded for those who wish/need to attend remotely and/or asynchronously.

 Re-Entry Protocol for Labs and Classrooms:

 To limit the spread of COVID-19 on campus, the University of Calgary has implemented safety measures to ensure the campus is a safe and welcoming space for students, faculty and staff. The most current safety information for campus can be found [here](#).

 Course Site:

 D2L: PHYS 543 L01-(Fall 2021)-Quantum Mechanics II

 Note: Students must use their U of C account for all course correspondence.

2. **Requisites:**

 See section 3.5.C in the Faculty of Science section of the online Calendar.

 Prerequisite(s):
 Physics 443 or Chemistry 373.

3. **Grading:**

 The University policy on grading and related matters is described in F.1 and F.2 of the online University Calendar.

 In determining the overall grade in the course the following weights will be used:
<table>
<thead>
<tr>
<th>Component(s)</th>
<th>Weighting %</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework assignments</td>
<td>30</td>
<td>Throughout term (see detailed description)</td>
</tr>
<tr>
<td>Term project presentation</td>
<td>20</td>
<td>Dec 6-8 (see detailed description)</td>
</tr>
<tr>
<td>Midterm</td>
<td>15</td>
<td>Nov 15 (during class)</td>
</tr>
<tr>
<td>Final</td>
<td>35</td>
<td>TBD</td>
</tr>
</tbody>
</table>

Homework

The lowest graded homework assignment score will not be counted towards your final grade.

Homework is to be handed in according to the schedule (approximately every 2nd week), which will be announced on the course website with at least one week notice for any changes to the schedule. Homework must be submitted via the course website (dropbox) on D2L. There are no homework-assignments during the first week of classes, reading-week, midterm week, and final exam week.

Homework assignments handed in late without prior agreement with instructor will receive a score reduction of 25% if handed within 24 hours of the due date and a score reduction of 50% if handed in before time that the home-work solutions are made available.

Term project - PHASQ 2021 Conference

The term project will emulate a scientific conference at which participants will give presentations covering a scientific research article. The presentations will be given in the final week of the term at the “PHASQ 2021” conference. The conference will feature poster presentations and a limited number of talks. Whether participants give a talk or present a poster will depend on their preference indicated in the conference registration form as well as the Program and Selection Committee’s (described below) assessment of the abstract. Participants at the conference can be individual students or teams of two students.

The term project presentations must be based on a detailed review and synopsis of a research paper in a topic related to the course material. Students are encouraged to suggest research papers, which must be approved by the instructor. A list of suitable papers will be posted on D2L during the start of the term.

The venue for the conference will be announced during the term and it will also be determined if an in-person event is feasible. Although an in-person experience will be more rewarding for students there will be options for online delivery of the presentations.

In addition to the giving a presentation all students will be involved in one of two committees (each consisting of half of the students in the class). The “Program & Selection Committee” will review and score the submitted abstracts, based on which the presentations are assigned to be given as talks or poster presentations. The “Awards Committee” will evaluate and score the talks and poster presentations in order to determine the best talk and poster presentation, which will both receive an award. Besides the honour the winners of the presentation in each category will have their final exam be weighted extra – 5% additional weight for talk winner and 3% extra weight for the poster presentation winner. These extra weights will be added as bonus such that the final percentage exceeds 100% for the winners. As an example if the winner of the best talk scores 30/35 -> 85.7% on the final the bonus will mean that the final grade will be calculated as ((0.35+0.05) x 85.7% instead of 0.35 x 85.7%.

Each piece of work (reports, assignments, quizzes, midterm exam(s) or final examination) submitted by the student will be assigned a grade. The student's grade for each component listed above will be combined with the indicated weights to produce an overall percentage for the course, which will be used to determine the course letter grade.

The conversion between a percentage grade and letter grade is as follows.

<table>
<thead>
<tr>
<th>Grade</th>
<th>A+</th>
<th>A</th>
<th>A-</th>
<th>B+</th>
<th>B</th>
<th>B-</th>
<th>C+</th>
<th>C</th>
<th>C-</th>
<th>D+</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum % Required</td>
<td>95%</td>
<td>90%</td>
<td>85%</td>
<td>80%</td>
<td>75%</td>
<td>70%</td>
<td>65%</td>
<td>60%</td>
<td>55%</td>
<td>50%</td>
<td>45%</td>
</tr>
</tbody>
</table>

The final grade percentage will not be rounded up before conversion to a letter grade according to the conversion table.

This course will have a final exam that will be scheduled by the Registrar. The Final Examination Schedule will be
published by the Registrar’s Office approximately one month after the start of the term. The final exam for this course will be designed to be completed within 2 hours.

The University of Calgary offers a flexible grade option, Credit Granted (CG) to support student’s breadth of learning and student wellness. Faculty units may have additional requirements or restrictions for the use of the CG grade at the faculty, degree or program level. To see the full list of Faculty of Science courses where CG is not eligible, please visit the following website: https://science.ucalgary.ca/current-students/undergraduate/program-advising/flexible-grading-option-cg-grade

4. Missed Components Of Term Work:

The university has suspended the requirement for students to provide evidence for absences. Please do not attend medical clinics for medical notes or Commissioners for Oaths for statutory declarations.

In the event that a student legitimately fails to submit any online assessment on time (e.g. due to illness etc...), please contact the course coordinator, or the course instructor if this course does not have a coordinator to arrange for a re-adjustment of a submission date. Absences not reported within 48 hours will not be accommodated. If an excused absence is approved, one possible arrangement is that the percentage weight of the legitimately missed assignment could also be pro-rated among the components of the course. This option is at the discretion of the coordinator and may not be a viable option based on the design of this course.

5. Scheduled Out-of-Class Activities:

There are no scheduled out of class activities for this course.

6. Course Materials:

Required Textbook(s):

Additional notes may be provided.

In order to successfully engage in their learning experiences at the University of Calgary, students taking online, remote and blended courses are required to have reliable access to the following technology:

- A computer with a supported operating system, as well as the latest security, and malware updates;
- A current and updated web browser;
- Webcam/Camera (built-in or external);
- Microphone and speaker (built-in or external), or headset with microphone;
- Current antivirus and/or firewall software enabled;
- Stable internet connection.

For more information please refer to the UofC ELearning online website.

7. Examination Policy:

All exams are intended to be completed individually.

Midterm exam will be delivered during the regular class time on Nov. 15th. Any accommodations, e.g. extended time, will be calculated from the 50 minutes class duration.

The final exam will be scheduled by the registrar.

Students should also read the Calendar, Section G, on Examinations.

8. Approved Mandatory And Optional Course Supplemental Fees:

There are no mandatory or optional course supplemental fees for this course.

9. Writing Across The Curriculum Statement:

For all components of the course, in any written work, the quality of the student’s writing (language, spelling, grammar, presentation etc.) can be a factor in the evaluation of the work. See also Section E.2 of the University Calendar.
10. **Human Studies Statement:**

Students will not participate as subjects or researchers in human studies.

See also Section E.5 of the University Calendar.

11. **Reappraisal Of Grades:**

A student wishing a reappraisal, should first attempt to review the graded work with the Course coordinator/instructor or department offering the course. Students with sufficient academic grounds may request a reappraisal. **Non-academic grounds are not relevant for grade reappraisals.** Students should be aware that the grade being reappraised may be raised, lowered or remain the same. See Section I.3 of the University Calendar.

a. **Term Work:** The student should present their rationale as effectively and as fully as possible to the Course coordinator/instructor within **ten business days** of either being notified about the mark, or of the item’s return to the class. If the student is not satisfied with the outcome, the student shall submit the Reappraisal of Graded Term work form to the department in which the course is offered within 2 business days of receiving the decision from the instructor. The Department will arrange for a reappraisal of the work within the next ten business days. The reappraisal will only be considered if the student provides a detailed rationale that outlines where and for what reason an error is suspected. See sections I.1 and I.2 of the University Calendar.

b. **Final Exam:** The student shall submit the request to Enrolment Services. See Section I.3 of the University Calendar.

12. **Other Important Information For Students:**

a. **Mental Health** The University of Calgary recognizes the pivotal role that student mental health plays in physical health, social connectedness and academic success, and aspires to create a caring and supportive campus community where individuals can freely talk about mental health and receive supports when needed. We encourage you to explore the mental health resources available throughout the university community, such as counselling, self-help resources, peer support or skills-building available through the SU Wellness Centre (Room 370, MacEwan Student Centre, Mental Health Services Website) and the Campus Mental Health Strategy website (Mental Health).

b. **SU Wellness Services:** For more information, see www.ucalgary.ca/wellnesscentre or call 403-210-9355.

c. **Sexual Violence:** The Sexual Violence Support Advocate, Carla Bertsch, can provide confidential support and information regarding sexual violence to all members of the university community. Carla can be reached by email (svsa@ucalgary.ca) or phone at 403-220-2208. The complete University of Calgary policy on sexual violence can be viewed at (https://www.ucalgary.ca/legal-services/sites/default/files/teams/1/Policies-Sexual-and-Gender-Based-Violence-Policy.pdf)

d. **Misconduct:** Academic integrity is the foundation of the development and acquisition of knowledge and is based on values of honesty, trust, responsibility, and respect. We expect members of our community to act with integrity. Research integrity, ethics, and principles of conduct are key to academic integrity. Members of our campus community are required to abide by our institutional Code of Conduct and promote academic integrity in upholding the University of Calgary’s reputation of excellence. Some examples of academic misconduct include but are not limited to: posting course material to online platforms or file sharing without the course instructor’s consent; submitting or presenting work if it were the student’s own work; submitting or presenting work in one course which has also been submitted in another course without the instructor’s permission; borrowing experimental values from others without the instructor’s approval; falsification/fabrication of experimental values in a report. Please read the following to inform yourself more on academic integrity:

 Student Handbook on Academic Integrity
 Student Academic Misconduct Policy and Procedure
 Research Integrity Policy

Additional information is available on the Student Success Centre Academic Integrity page

e. **Academic Accommodation Policy:**

It is the student’s responsibility to request academic accommodations according to the University policies and procedures listed below. The student accommodation policy can be found at:
https://www.ucalgary.ca/legal-services/sites/default/files/teams/1/Policies-Student-Accommodation-Policy.pdf

Students needing an accommodation because of a disability or medical condition should communicate this need to Student Accessibility Services in accordance with the Procedure for Accommodations for Students with Disabilities: https://www.ucalgary.ca/legal-services/sites/default/files/teams/1/Policies-Accommodation
Students needing an accommodation in relation to their coursework or to fulfil requirements for a graduate degree, based on a Protected Ground other than Disability, should communicate this need, by filling out the Request for Academic Accommodation Form and sending it to Dr. David Feder by email phas.ahugrd@ucalgary.ca preferably 10 business days before the due date of an assessment or scheduled absence.

f. Freedom of Information and Privacy: This course is conducted in accordance with the Freedom of Information and Protection of Privacy Act (FOIPP). Students should identify themselves on all written work by placing their name on the front page and their ID number on each subsequent page. For more information, see Legal Services website.

g. Student Union Information: VP Academic, Phone: 403-220-3911 Email: suvpaca@ucalgary.ca. SU Faculty Rep., Phone: 403-220-3913 Email: sciencerep@su.ucalgary.ca. Student Ombudsman, Email: ombuds@ucalgary.ca.

h. Surveys: At the University of Calgary, feedback through the Universal Student Ratings of Instruction (USRI) survey and the Faculty of Science Teaching Feedback form provides valuable information to help with evaluating instruction, enhancing learning and teaching, and selecting courses. Your responses make a difference - please participate in these surveys.

i. Copyright of Course Materials: All course materials (including those posted on the course D2L site, a course website, or used in any teaching activity such as (but not limited to) examinations, quizzes, assignments, laboratory manuals, lecture slides or lecture materials and other course notes) are protected by law. These materials are for the sole use of students registered in this course and must not be redistributed. Sharing these materials with anyone else would be a breach of the terms and conditions governing student access to D2L, as well as a violation of the copyright in these materials, and may be pursued as a case of student academic or non-academic misconduct, in addition to any other remedies available at law.

Schedule of topics

Schedule is approximate and may be adjusted depending on progress and feedback.

Lecture component - Wed & Fri classes:
(In-class, online synchronous and asynchronous delivery)

Week 1: Lecture 1-2 (Sep 8, 10)
Introduction and review of syllabus
Conservation laws, parity – Chapter 6.1-4

Week 2: Lectures 3-4 (Sep 15, 17)
Symmetries and selection rules – Chapter 6.5-7
Heisenberg picture – Chapter 6.8

Week 3: Lectures 5-6 (Sep 22, 24)
Perturbation theory – Chapter 7.1-2
Fine structure – Chapter 7.3

Week 4: Lectures 7-8 (Sep 29, Oct 1)
Zeeman effect – Chapter 7.4
Hyperfine splitting – Chapter 7.5
Week 5: Lectures 9-10 (Oct 6, 8)
Variational principle – Chapter 8

Week 6: Lecture 11-12 (Oct 13, 15)
WKB approximation – Chapter 9

Week 7: Lecture 13-14 (Oct 20, 22)
Scattering theory – Chapter 10

Week 8: Lecture 15-16 (Oct 27, 29)
Two-level systems – Chapter 11.2
Interaction with E.M. waves – Chapter 11.3-4

Week 9: Lecture 17-18 (Nov 3, 5)
More topics on light-matter interaction

Week 10: Term-break/reading week

Week 11: Lecture 19-20 (Nov 17, 19)
Pure and mixed states – Chapter 12.1
Entanglement and Bell’s theorem – Chapter 12.2

Week 12: Lecture 21-22 (Nov 24, 26)
Advanced topics (e.g. second quantization, quantum bits and decoherence, ...)

Week 13: Lecture 23-24 (Dec 1, 3)
Advanced topics (e.g. quantum information, laser cooling and trapping, ...)

Week 14: Lecture 25 (Dec 8)
Presentations and review

Course incomes

Ability to solve differential equations, perform basic matrix/vector operations. Understanding of eigenvectors and eigenvalues. Comfortable working with complex numbers (including complex exponentials). Familiarity with basics of modern physics – atoms, photons and electrons, Coulombs Law, electric potential and other concepts of electromagnetism. Understanding of wavefunctions, the Schrödinger equation, Dirac notation, and Hilbert space.
Course Outcomes:

- Use various perturbation and approximation approaches in quantum mechanics to explain and derive a number of phenomena, e.g. fine and hyperfine structure of atoms and Zeeman splitting.
- Apply scattering theory and understand its consequences under a range of experimental conditions.
- Have a broad understanding of the interaction between electromagnetic radiation and atomic quantum systems and be able to address a number of practical applications.
- Address qualitatively and quantitatively how quantum mechanics relates to a number of common technologies and phenomena.